Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/653
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBennaceur, Amel. ;en_US
dc.contributor.authorHehnle, Reiner. ;en_US
dc.contributor.authorMeinke, Karl. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:20:06Z-
dc.date.available2020-05-17T08:20:06Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319965628 ;en_US
dc.identifier.isbn9783319965611 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/653-
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319965611. ;en_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.description005.1 ; 23 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractMachine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limitsee held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches. ;en_US
dc.description.statementofresponsibilityedited by Amel Bennaceur, Reiner Hehnle, Karl Meinke.en_US
dc.description.tableofcontentsIntroduction -- Testing and Learning -- Extensions of Automata Learning -- Integrative Approaches. ;en_US
dc.format.extentIX, 257 p. 38 illus. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;en_US
dc.relation.haspart9783319965611.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectSoftware Engineeringen_US
dc.subjectComputersen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectComputer Scienceen_US
dc.subjectSoftware Engineering/Programming and Operating Systems. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectTheory of Computation. ;en_US
dc.subject.lccQA76.758 ;en_US
dc.titleMachine Learning for Dynamic Software Analysis: Potentials and Limitsen_US
dc.title.alternativeInternational Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319965611.pdf7.66 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBennaceur, Amel. ;en_US
dc.contributor.authorHehnle, Reiner. ;en_US
dc.contributor.authorMeinke, Karl. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:20:06Z-
dc.date.available2020-05-17T08:20:06Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319965628 ;en_US
dc.identifier.isbn9783319965611 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/653-
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319965611. ;en_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.description005.1 ; 23 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractMachine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limitsee held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches. ;en_US
dc.description.statementofresponsibilityedited by Amel Bennaceur, Reiner Hehnle, Karl Meinke.en_US
dc.description.tableofcontentsIntroduction -- Testing and Learning -- Extensions of Automata Learning -- Integrative Approaches. ;en_US
dc.format.extentIX, 257 p. 38 illus. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;en_US
dc.relation.haspart9783319965611.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectSoftware Engineeringen_US
dc.subjectComputersen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectComputer Scienceen_US
dc.subjectSoftware Engineering/Programming and Operating Systems. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectTheory of Computation. ;en_US
dc.subject.lccQA76.758 ;en_US
dc.titleMachine Learning for Dynamic Software Analysis: Potentials and Limitsen_US
dc.title.alternativeInternational Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319965611.pdf7.66 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBennaceur, Amel. ;en_US
dc.contributor.authorHehnle, Reiner. ;en_US
dc.contributor.authorMeinke, Karl. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:20:06Z-
dc.date.available2020-05-17T08:20:06Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319965628 ;en_US
dc.identifier.isbn9783319965611 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/653-
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319965611. ;en_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.description005.1 ; 23 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractMachine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limitsee held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches. ;en_US
dc.description.statementofresponsibilityedited by Amel Bennaceur, Reiner Hehnle, Karl Meinke.en_US
dc.description.tableofcontentsIntroduction -- Testing and Learning -- Extensions of Automata Learning -- Integrative Approaches. ;en_US
dc.format.extentIX, 257 p. 38 illus. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;en_US
dc.relation.haspart9783319965611.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectSoftware Engineeringen_US
dc.subjectComputersen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectComputer Scienceen_US
dc.subjectSoftware Engineering/Programming and Operating Systems. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectTheory of Computation. ;en_US
dc.subject.lccQA76.758 ;en_US
dc.titleMachine Learning for Dynamic Software Analysis: Potentials and Limitsen_US
dc.title.alternativeInternational Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319965611.pdf7.66 MBAdobe PDFThumbnail
Preview File