جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید. http://localhost/handle/Hannan/653
عنوان: Machine Learning for Dynamic Software Analysis: Potentials and Limits
عنوان دیگر: International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers /
پدیدآورنده: Bennaceur, Amel. ;;Hehnle, Reiner. ;;Meinke, Karl. ;
کلید واژه ها: Computer Science;Software Engineering;Computers;Artificial Intelligence;Computer Science;Software Engineering/Programming and Operating Systems. ;;Artificial Intelligence and Robotics;Theory of Computation. ;;QA76.758 ;
تاریخ انتشار: 2018
محل نشر: Cham :
ناشر: Springer International Publishing :
Imprint: Springer,
فروست / شماره : Lecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;
Lecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;
چکیده: Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limitsee held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches. ;
توضیحات : 
Printed edition: ; 9783319965611. ;

SpringerLink (Online service) ;
005.1 ; 23 ;

آدرس: http://localhost/handle/Hannan/653
شابک : 9783319965628 ;
9783319965611 (print) ;
اطلاعات بیشتر: IX, 257 p. 38 illus. ; online resource. ;
مجموعه(های):مدیریت فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319965611.pdf7.66 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Machine Learning for Dynamic Software Analysis: Potentials and Limits
عنوان دیگر: International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers /
پدیدآورنده: Bennaceur, Amel. ;;Hehnle, Reiner. ;;Meinke, Karl. ;
کلید واژه ها: Computer Science;Software Engineering;Computers;Artificial Intelligence;Computer Science;Software Engineering/Programming and Operating Systems. ;;Artificial Intelligence and Robotics;Theory of Computation. ;;QA76.758 ;
تاریخ انتشار: 2018
محل نشر: Cham :
ناشر: Springer International Publishing :
Imprint: Springer,
فروست / شماره : Lecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;
Lecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;
چکیده: Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limitsee held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches. ;
توضیحات : 
Printed edition: ; 9783319965611. ;

SpringerLink (Online service) ;
005.1 ; 23 ;

آدرس: http://localhost/handle/Hannan/653
شابک : 9783319965628 ;
9783319965611 (print) ;
اطلاعات بیشتر: IX, 257 p. 38 illus. ; online resource. ;
مجموعه(های):مدیریت فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319965611.pdf7.66 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Machine Learning for Dynamic Software Analysis: Potentials and Limits
عنوان دیگر: International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers /
پدیدآورنده: Bennaceur, Amel. ;;Hehnle, Reiner. ;;Meinke, Karl. ;
کلید واژه ها: Computer Science;Software Engineering;Computers;Artificial Intelligence;Computer Science;Software Engineering/Programming and Operating Systems. ;;Artificial Intelligence and Robotics;Theory of Computation. ;;QA76.758 ;
تاریخ انتشار: 2018
محل نشر: Cham :
ناشر: Springer International Publishing :
Imprint: Springer,
فروست / شماره : Lecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;
Lecture Notes in Computer Science, ; 0302-9743 ; ; 11026. ;
چکیده: Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limitsee held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches. ;
توضیحات : 
Printed edition: ; 9783319965611. ;

SpringerLink (Online service) ;
005.1 ; 23 ;

آدرس: http://localhost/handle/Hannan/653
شابک : 9783319965628 ;
9783319965611 (print) ;
اطلاعات بیشتر: IX, 257 p. 38 illus. ; online resource. ;
مجموعه(های):مدیریت فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319965611.pdf7.66 MBAdobe PDFتصویر
مشاهده فایل