Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/523
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAydin, Berkay. ;en_US
dc.contributor.authorAngryk, Rafal. A. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:18:06Z-
dc.date.available2020-05-17T08:18:06Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319998732 ;en_US
dc.identifier.isbn9783319998725 (print) ;en_US
dc.identifier.isbn9783319998749 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/523-
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319998725. ;en_US
dc.descriptionQA75.5-76.95 ;en_US
dc.description005.7 ; 23 ;en_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319998749. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the focus of this book is to provide readers insight into the mining algorithms from evolving regions, the authors also discuss data management for spatiotemporal trajectories, which has become increasingly important with the increasing volume of trajectories. This brief describes state-of-the-art knowledge discovery techniques to computer science graduate students who are interested in spatiotemporal data mining, as well as researchers/professionals, who deal with advanced spatiotemporal data analysis in their fields. These fields include GIS-experts, meteorologists, epidemiologists, neurologists, and solar physicists. ;en_US
dc.description.statementofresponsibilityby Berkay Aydin, Rafal. A Angryk.en_US
dc.format.extentXIII, 106 p. 33 illus., 32 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesSpringerBriefs in Computer Science, ; 2191-5768. ;en_US
dc.relation.ispartofseriesSpringerBriefs in Computer Science, ; 2191-5768. ;en_US
dc.relation.haspart9783319998725.pdfen_US
dc.subjectInformation systems. ;en_US
dc.subjectGeographical information systems. ;en_US
dc.subjectRegional economics. ;en_US
dc.subjectInformation Systems and Communication Service. ; http://scigraph.springernature.com/things/product-market-codes/I18008. ;en_US
dc.subjectGeographical Information Systems/Cartography. ; http://scigraph.springernature.com/things/product-market-codes/J13000. ;en_US
dc.subjectRegional/Spatial Science. ; http://scigraph.springernature.com/things/product-market-codes/W49000. ;en_US
dc.titleSpatiotemporal Frequent Pattern Mining from Evolving Region Trajectoriesen_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319998725.pdf5.23 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAydin, Berkay. ;en_US
dc.contributor.authorAngryk, Rafal. A. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:18:06Z-
dc.date.available2020-05-17T08:18:06Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319998732 ;en_US
dc.identifier.isbn9783319998725 (print) ;en_US
dc.identifier.isbn9783319998749 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/523-
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319998725. ;en_US
dc.descriptionQA75.5-76.95 ;en_US
dc.description005.7 ; 23 ;en_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319998749. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the focus of this book is to provide readers insight into the mining algorithms from evolving regions, the authors also discuss data management for spatiotemporal trajectories, which has become increasingly important with the increasing volume of trajectories. This brief describes state-of-the-art knowledge discovery techniques to computer science graduate students who are interested in spatiotemporal data mining, as well as researchers/professionals, who deal with advanced spatiotemporal data analysis in their fields. These fields include GIS-experts, meteorologists, epidemiologists, neurologists, and solar physicists. ;en_US
dc.description.statementofresponsibilityby Berkay Aydin, Rafal. A Angryk.en_US
dc.format.extentXIII, 106 p. 33 illus., 32 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesSpringerBriefs in Computer Science, ; 2191-5768. ;en_US
dc.relation.ispartofseriesSpringerBriefs in Computer Science, ; 2191-5768. ;en_US
dc.relation.haspart9783319998725.pdfen_US
dc.subjectInformation systems. ;en_US
dc.subjectGeographical information systems. ;en_US
dc.subjectRegional economics. ;en_US
dc.subjectInformation Systems and Communication Service. ; http://scigraph.springernature.com/things/product-market-codes/I18008. ;en_US
dc.subjectGeographical Information Systems/Cartography. ; http://scigraph.springernature.com/things/product-market-codes/J13000. ;en_US
dc.subjectRegional/Spatial Science. ; http://scigraph.springernature.com/things/product-market-codes/W49000. ;en_US
dc.titleSpatiotemporal Frequent Pattern Mining from Evolving Region Trajectoriesen_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319998725.pdf5.23 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAydin, Berkay. ;en_US
dc.contributor.authorAngryk, Rafal. A. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:18:06Z-
dc.date.available2020-05-17T08:18:06Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319998732 ;en_US
dc.identifier.isbn9783319998725 (print) ;en_US
dc.identifier.isbn9783319998749 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/523-
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319998725. ;en_US
dc.descriptionQA75.5-76.95 ;en_US
dc.description005.7 ; 23 ;en_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319998749. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the focus of this book is to provide readers insight into the mining algorithms from evolving regions, the authors also discuss data management for spatiotemporal trajectories, which has become increasingly important with the increasing volume of trajectories. This brief describes state-of-the-art knowledge discovery techniques to computer science graduate students who are interested in spatiotemporal data mining, as well as researchers/professionals, who deal with advanced spatiotemporal data analysis in their fields. These fields include GIS-experts, meteorologists, epidemiologists, neurologists, and solar physicists. ;en_US
dc.description.statementofresponsibilityby Berkay Aydin, Rafal. A Angryk.en_US
dc.format.extentXIII, 106 p. 33 illus., 32 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesSpringerBriefs in Computer Science, ; 2191-5768. ;en_US
dc.relation.ispartofseriesSpringerBriefs in Computer Science, ; 2191-5768. ;en_US
dc.relation.haspart9783319998725.pdfen_US
dc.subjectInformation systems. ;en_US
dc.subjectGeographical information systems. ;en_US
dc.subjectRegional economics. ;en_US
dc.subjectInformation Systems and Communication Service. ; http://scigraph.springernature.com/things/product-market-codes/I18008. ;en_US
dc.subjectGeographical Information Systems/Cartography. ; http://scigraph.springernature.com/things/product-market-codes/J13000. ;en_US
dc.subjectRegional/Spatial Science. ; http://scigraph.springernature.com/things/product-market-codes/W49000. ;en_US
dc.titleSpatiotemporal Frequent Pattern Mining from Evolving Region Trajectoriesen_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319998725.pdf5.23 MBAdobe PDFThumbnail
Preview File