جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید.
http://localhost/handle/Hannan/523
عنوان: | Spatiotemporal Frequent Pattern Mining from Evolving Region Trajectories |
پدیدآورنده: | Aydin, Berkay. ;;Angryk, Rafal. A. ; |
کلید واژه ها: | Information systems. ;;Geographical information systems. ;;Regional economics. ;;Information Systems and Communication Service. ; http://scigraph.springernature.com/things/product-market-codes/I18008. ;;Geographical Information Systems/Cartography. ; http://scigraph.springernature.com/things/product-market-codes/J13000. ;;Regional/Spatial Science. ; http://scigraph.springernature.com/things/product-market-codes/W49000. ; |
تاریخ انتشار: | 2018 |
محل نشر: | Cham : |
ناشر: | Springer International Publishing : Imprint: Springer, |
فروست / شماره : | SpringerBriefs in Computer Science, ; 2191-5768. ; SpringerBriefs in Computer Science, ; 2191-5768. ; |
چکیده: | This SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the focus of this book is to provide readers insight into the mining algorithms from evolving regions, the authors also discuss data management for spatiotemporal trajectories, which has become increasingly important with the increasing volume of trajectories. This brief describes state-of-the-art knowledge discovery techniques to computer science graduate students who are interested in spatiotemporal data mining, as well as researchers/professionals, who deal with advanced spatiotemporal data analysis in their fields. These fields include GIS-experts, meteorologists, epidemiologists, neurologists, and solar physicists. ; |
توضیحات : | Printed edition: ; 9783319998725. ; QA75.5-76.95 ; 005.7 ; 23 ; SpringerLink (Online service) ; Printed edition: ; 9783319998749. ; |
آدرس: | http://localhost/handle/Hannan/523 |
شابک : | 9783319998732 ; 9783319998725 (print) ; 9783319998749 (print) ; |
اطلاعات بیشتر: | XIII, 106 p. 33 illus., 32 illus. in color. ; online resource. ; |
مجموعه(های): | مدیریت فناوری اطلاعات |
پیوست های این کاربرگه
فایل | توضیحات | اندازه | فرمت | |
---|---|---|---|---|
9783319998725.pdf | 5.23 MB | Adobe PDF | مشاهده فایل |
عنوان: | Spatiotemporal Frequent Pattern Mining from Evolving Region Trajectories |
پدیدآورنده: | Aydin, Berkay. ;;Angryk, Rafal. A. ; |
کلید واژه ها: | Information systems. ;;Geographical information systems. ;;Regional economics. ;;Information Systems and Communication Service. ; http://scigraph.springernature.com/things/product-market-codes/I18008. ;;Geographical Information Systems/Cartography. ; http://scigraph.springernature.com/things/product-market-codes/J13000. ;;Regional/Spatial Science. ; http://scigraph.springernature.com/things/product-market-codes/W49000. ; |
تاریخ انتشار: | 2018 |
محل نشر: | Cham : |
ناشر: | Springer International Publishing : Imprint: Springer, |
فروست / شماره : | SpringerBriefs in Computer Science, ; 2191-5768. ; SpringerBriefs in Computer Science, ; 2191-5768. ; |
چکیده: | This SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the focus of this book is to provide readers insight into the mining algorithms from evolving regions, the authors also discuss data management for spatiotemporal trajectories, which has become increasingly important with the increasing volume of trajectories. This brief describes state-of-the-art knowledge discovery techniques to computer science graduate students who are interested in spatiotemporal data mining, as well as researchers/professionals, who deal with advanced spatiotemporal data analysis in their fields. These fields include GIS-experts, meteorologists, epidemiologists, neurologists, and solar physicists. ; |
توضیحات : | Printed edition: ; 9783319998725. ; QA75.5-76.95 ; 005.7 ; 23 ; SpringerLink (Online service) ; Printed edition: ; 9783319998749. ; |
آدرس: | http://localhost/handle/Hannan/523 |
شابک : | 9783319998732 ; 9783319998725 (print) ; 9783319998749 (print) ; |
اطلاعات بیشتر: | XIII, 106 p. 33 illus., 32 illus. in color. ; online resource. ; |
مجموعه(های): | مدیریت فناوری اطلاعات |
پیوست های این کاربرگه
فایل | توضیحات | اندازه | فرمت | |
---|---|---|---|---|
9783319998725.pdf | 5.23 MB | Adobe PDF | مشاهده فایل |
عنوان: | Spatiotemporal Frequent Pattern Mining from Evolving Region Trajectories |
پدیدآورنده: | Aydin, Berkay. ;;Angryk, Rafal. A. ; |
کلید واژه ها: | Information systems. ;;Geographical information systems. ;;Regional economics. ;;Information Systems and Communication Service. ; http://scigraph.springernature.com/things/product-market-codes/I18008. ;;Geographical Information Systems/Cartography. ; http://scigraph.springernature.com/things/product-market-codes/J13000. ;;Regional/Spatial Science. ; http://scigraph.springernature.com/things/product-market-codes/W49000. ; |
تاریخ انتشار: | 2018 |
محل نشر: | Cham : |
ناشر: | Springer International Publishing : Imprint: Springer, |
فروست / شماره : | SpringerBriefs in Computer Science, ; 2191-5768. ; SpringerBriefs in Computer Science, ; 2191-5768. ; |
چکیده: | This SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the focus of this book is to provide readers insight into the mining algorithms from evolving regions, the authors also discuss data management for spatiotemporal trajectories, which has become increasingly important with the increasing volume of trajectories. This brief describes state-of-the-art knowledge discovery techniques to computer science graduate students who are interested in spatiotemporal data mining, as well as researchers/professionals, who deal with advanced spatiotemporal data analysis in their fields. These fields include GIS-experts, meteorologists, epidemiologists, neurologists, and solar physicists. ; |
توضیحات : | Printed edition: ; 9783319998725. ; QA75.5-76.95 ; 005.7 ; 23 ; SpringerLink (Online service) ; Printed edition: ; 9783319998749. ; |
آدرس: | http://localhost/handle/Hannan/523 |
شابک : | 9783319998732 ; 9783319998725 (print) ; 9783319998749 (print) ; |
اطلاعات بیشتر: | XIII, 106 p. 33 illus., 32 illus. in color. ; online resource. ; |
مجموعه(های): | مدیریت فناوری اطلاعات |
پیوست های این کاربرگه
فایل | توضیحات | اندازه | فرمت | |
---|---|---|---|---|
9783319998725.pdf | 5.23 MB | Adobe PDF | مشاهده فایل |