Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/478
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMichelucci, Umberto. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:17:22Z-
dc.date.available2020-05-17T08:17:22Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484237908 ;en_US
dc.identifier.isbn9781484237892 (print) ;en_US
dc.identifier.isbn9781484237915 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/478-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484237892. ;en_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484237915. ;en_US
dc.descriptionen_US
dc.description.abstractWork with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. Youeell begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. Youeell discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). You will: Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset. ;en_US
dc.description.statementofresponsibilityby Umberto Michelucci.en_US
dc.description.tableofcontentsChapter 1: Introduction -- Chapter 2: Single Neurons -- Chapter 3: Fully connected Neural Network with more neurons -- Chapter 4: Neural networks error analysis -- Chapter 5: Dropout technique -- Chapter 6: Hyper parameters tuning -- Chapter 7: Tensorflow and optimizers (Gradient descent, Adam, momentum, etc.) -- Chapter 8: Convolutional Networks and image recognition -- Chapter 9: Recurrent Neural Networks -- Chapter 10: A practical COMPLETE example from scratch (put everything together) -- Chapter 11: Logistic regression implement from scratch in Python without libraries. . ;en_US
dc.format.extentXXI, 410 p. 178 illus., 7 illus. in color. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484237892.pdfen_US
dc.subjectElectronic data processing. ;en_US
dc.subjectPython (Computer program language). ;en_US
dc.subjectOpen source software. ;en_US
dc.subjectComputer Programmingen_US
dc.subjectBig data. ;en_US
dc.subjectComputing Methodologies. ; http://scigraph.springernature.com/things/product-market-codes/I21009. ;en_US
dc.subjectPython. ; http://scigraph.springernature.com/things/product-market-codes/I29080. ;en_US
dc.subjectOpen Source. ; http://scigraph.springernature.com/things/product-market-codes/I29090. ;en_US
dc.subjectBig Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;en_US
dc.subject.ddc006 ; 23 ;en_US
dc.titleApplied Deep Learningen_US
dc.title.alternativeA Case-Based Approach to Understanding Deep Neural Networks /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484237892.pdf12.88 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMichelucci, Umberto. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:17:22Z-
dc.date.available2020-05-17T08:17:22Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484237908 ;en_US
dc.identifier.isbn9781484237892 (print) ;en_US
dc.identifier.isbn9781484237915 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/478-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484237892. ;en_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484237915. ;en_US
dc.descriptionen_US
dc.description.abstractWork with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. Youeell begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. Youeell discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). You will: Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset. ;en_US
dc.description.statementofresponsibilityby Umberto Michelucci.en_US
dc.description.tableofcontentsChapter 1: Introduction -- Chapter 2: Single Neurons -- Chapter 3: Fully connected Neural Network with more neurons -- Chapter 4: Neural networks error analysis -- Chapter 5: Dropout technique -- Chapter 6: Hyper parameters tuning -- Chapter 7: Tensorflow and optimizers (Gradient descent, Adam, momentum, etc.) -- Chapter 8: Convolutional Networks and image recognition -- Chapter 9: Recurrent Neural Networks -- Chapter 10: A practical COMPLETE example from scratch (put everything together) -- Chapter 11: Logistic regression implement from scratch in Python without libraries. . ;en_US
dc.format.extentXXI, 410 p. 178 illus., 7 illus. in color. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484237892.pdfen_US
dc.subjectElectronic data processing. ;en_US
dc.subjectPython (Computer program language). ;en_US
dc.subjectOpen source software. ;en_US
dc.subjectComputer Programmingen_US
dc.subjectBig data. ;en_US
dc.subjectComputing Methodologies. ; http://scigraph.springernature.com/things/product-market-codes/I21009. ;en_US
dc.subjectPython. ; http://scigraph.springernature.com/things/product-market-codes/I29080. ;en_US
dc.subjectOpen Source. ; http://scigraph.springernature.com/things/product-market-codes/I29090. ;en_US
dc.subjectBig Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;en_US
dc.subject.ddc006 ; 23 ;en_US
dc.titleApplied Deep Learningen_US
dc.title.alternativeA Case-Based Approach to Understanding Deep Neural Networks /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484237892.pdf12.88 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMichelucci, Umberto. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:17:22Z-
dc.date.available2020-05-17T08:17:22Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484237908 ;en_US
dc.identifier.isbn9781484237892 (print) ;en_US
dc.identifier.isbn9781484237915 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/478-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484237892. ;en_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484237915. ;en_US
dc.descriptionen_US
dc.description.abstractWork with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. Youeell begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. Youeell discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). You will: Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset. ;en_US
dc.description.statementofresponsibilityby Umberto Michelucci.en_US
dc.description.tableofcontentsChapter 1: Introduction -- Chapter 2: Single Neurons -- Chapter 3: Fully connected Neural Network with more neurons -- Chapter 4: Neural networks error analysis -- Chapter 5: Dropout technique -- Chapter 6: Hyper parameters tuning -- Chapter 7: Tensorflow and optimizers (Gradient descent, Adam, momentum, etc.) -- Chapter 8: Convolutional Networks and image recognition -- Chapter 9: Recurrent Neural Networks -- Chapter 10: A practical COMPLETE example from scratch (put everything together) -- Chapter 11: Logistic regression implement from scratch in Python without libraries. . ;en_US
dc.format.extentXXI, 410 p. 178 illus., 7 illus. in color. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484237892.pdfen_US
dc.subjectElectronic data processing. ;en_US
dc.subjectPython (Computer program language). ;en_US
dc.subjectOpen source software. ;en_US
dc.subjectComputer Programmingen_US
dc.subjectBig data. ;en_US
dc.subjectComputing Methodologies. ; http://scigraph.springernature.com/things/product-market-codes/I21009. ;en_US
dc.subjectPython. ; http://scigraph.springernature.com/things/product-market-codes/I29080. ;en_US
dc.subjectOpen Source. ; http://scigraph.springernature.com/things/product-market-codes/I29090. ;en_US
dc.subjectBig Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;en_US
dc.subject.ddc006 ; 23 ;en_US
dc.titleApplied Deep Learningen_US
dc.title.alternativeA Case-Based Approach to Understanding Deep Neural Networks /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484237892.pdf12.88 MBAdobe PDFThumbnail
Preview File