جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید. http://localhost/handle/Hannan/478
عنوان: Applied Deep Learning
عنوان دیگر: A Case-Based Approach to Understanding Deep Neural Networks /
پدیدآورنده: Michelucci, Umberto. ;
کلید واژه ها: Electronic data processing. ;;Python (Computer program language). ;;Open source software. ;;Computer Programming;Big data. ;;Computing Methodologies. ; http://scigraph.springernature.com/things/product-market-codes/I21009. ;;Python. ; http://scigraph.springernature.com/things/product-market-codes/I29080. ;;Open Source. ; http://scigraph.springernature.com/things/product-market-codes/I29090. ;;Big Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;;006 ; 23 ;
تاریخ انتشار: 2018
محل نشر: Berkeley, CA :
ناشر: Apress :
Imprint: Apress,
چکیده: Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. Youeell begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. Youeell discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). You will: Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset. ;
توضیحات : 


Printed edition: ; 9781484237892. ;
SpringerLink (Online service) ;
QA75.5-76.95 ;

Printed edition: ; 9781484237915. ;
آدرس: http://localhost/handle/Hannan/478
شابک : 9781484237908 ;
9781484237892 (print) ;
9781484237915 (print) ;
اطلاعات بیشتر: XXI, 410 p. 178 illus., 7 illus. in color. ; online resource. ;
مجموعه(های):مدیریت فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9781484237892.pdf12.88 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Applied Deep Learning
عنوان دیگر: A Case-Based Approach to Understanding Deep Neural Networks /
پدیدآورنده: Michelucci, Umberto. ;
کلید واژه ها: Electronic data processing. ;;Python (Computer program language). ;;Open source software. ;;Computer Programming;Big data. ;;Computing Methodologies. ; http://scigraph.springernature.com/things/product-market-codes/I21009. ;;Python. ; http://scigraph.springernature.com/things/product-market-codes/I29080. ;;Open Source. ; http://scigraph.springernature.com/things/product-market-codes/I29090. ;;Big Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;;006 ; 23 ;
تاریخ انتشار: 2018
محل نشر: Berkeley, CA :
ناشر: Apress :
Imprint: Apress,
چکیده: Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. Youeell begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. Youeell discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). You will: Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset. ;
توضیحات : 


Printed edition: ; 9781484237892. ;
SpringerLink (Online service) ;
QA75.5-76.95 ;

Printed edition: ; 9781484237915. ;
آدرس: http://localhost/handle/Hannan/478
شابک : 9781484237908 ;
9781484237892 (print) ;
9781484237915 (print) ;
اطلاعات بیشتر: XXI, 410 p. 178 illus., 7 illus. in color. ; online resource. ;
مجموعه(های):مدیریت فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9781484237892.pdf12.88 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Applied Deep Learning
عنوان دیگر: A Case-Based Approach to Understanding Deep Neural Networks /
پدیدآورنده: Michelucci, Umberto. ;
کلید واژه ها: Electronic data processing. ;;Python (Computer program language). ;;Open source software. ;;Computer Programming;Big data. ;;Computing Methodologies. ; http://scigraph.springernature.com/things/product-market-codes/I21009. ;;Python. ; http://scigraph.springernature.com/things/product-market-codes/I29080. ;;Open Source. ; http://scigraph.springernature.com/things/product-market-codes/I29090. ;;Big Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;;006 ; 23 ;
تاریخ انتشار: 2018
محل نشر: Berkeley, CA :
ناشر: Apress :
Imprint: Apress,
چکیده: Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. Youeell begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. Youeell discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). You will: Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset. ;
توضیحات : 


Printed edition: ; 9781484237892. ;
SpringerLink (Online service) ;
QA75.5-76.95 ;

Printed edition: ; 9781484237915. ;
آدرس: http://localhost/handle/Hannan/478
شابک : 9781484237908 ;
9781484237892 (print) ;
9781484237915 (print) ;
اطلاعات بیشتر: XXI, 410 p. 178 illus., 7 illus. in color. ; online resource. ;
مجموعه(های):مدیریت فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9781484237892.pdf12.88 MBAdobe PDFتصویر
مشاهده فایل