جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید.
http://localhost/handle/Hannan/4706
نمایش کامل اطلاعات کتابشناختی
| فیلد DublinCore | مقدار | زبان |
|---|---|---|
| dc.date.accessioned | 2023-05-01T09:37:49Z | - |
| dc.date.available | 2023-05-01T09:37:49Z | - |
| dc.date.issued | 2016 | en_US |
| dc.identifier.issn | 1913-1844 | - |
| dc.identifier.uri | http://localhost/handle/Hannan/4706 | - |
| dc.description.abstract | This paper proposes a Support Vector Regression (SVR) based on Fuzzified Input-output Variables which has good comprehensibility as well as satisfactory generalization capability. SVM provides a mechanism to predict data from training ones. Then, results from proposed Fuzzified SVR-PSO (FSVR-PSO) model are compared with other methods; comparative tests are performed using pipe failures data. The analysis and the experimental results show this method has high comprehensibility as well as satisfactory generalization capability. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | SVR, Fuzzified Input-Output, PSO, failure rates | en_US |
| dc.title | Fuzzified Pipes Dataset to Predict Failure Rates by Hybrid SVR-PSO Algorithm | - |
| dc.type | Article | en_US |
| مجموعه(های): | تمامی گرایش های مدیریت شامل مدیریت بازرگانی و صنعتی | |
پیوست های این کاربرگه
| فایل | توضیحات | اندازه | فرمت | |
|---|---|---|---|---|
| 5.pdf | 647.6 kB | Adobe PDF | ![]() مشاهده فایل |
نمایش کامل اطلاعات کتابشناختی
| فیلد DublinCore | مقدار | زبان |
|---|---|---|
| dc.date.accessioned | 2023-05-01T09:37:49Z | - |
| dc.date.available | 2023-05-01T09:37:49Z | - |
| dc.date.issued | 2016 | en_US |
| dc.identifier.issn | 1913-1844 | - |
| dc.identifier.uri | http://localhost/handle/Hannan/4706 | - |
| dc.description.abstract | This paper proposes a Support Vector Regression (SVR) based on Fuzzified Input-output Variables which has good comprehensibility as well as satisfactory generalization capability. SVM provides a mechanism to predict data from training ones. Then, results from proposed Fuzzified SVR-PSO (FSVR-PSO) model are compared with other methods; comparative tests are performed using pipe failures data. The analysis and the experimental results show this method has high comprehensibility as well as satisfactory generalization capability. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | SVR, Fuzzified Input-Output, PSO, failure rates | en_US |
| dc.title | Fuzzified Pipes Dataset to Predict Failure Rates by Hybrid SVR-PSO Algorithm | - |
| dc.type | Article | en_US |
| مجموعه(های): | تمامی گرایش های مدیریت شامل مدیریت بازرگانی و صنعتی | |
پیوست های این کاربرگه
| فایل | توضیحات | اندازه | فرمت | |
|---|---|---|---|---|
| 5.pdf | 647.6 kB | Adobe PDF | ![]() مشاهده فایل |
نمایش کامل اطلاعات کتابشناختی
| فیلد DublinCore | مقدار | زبان |
|---|---|---|
| dc.date.accessioned | 2023-05-01T09:37:49Z | - |
| dc.date.available | 2023-05-01T09:37:49Z | - |
| dc.date.issued | 2016 | en_US |
| dc.identifier.issn | 1913-1844 | - |
| dc.identifier.uri | http://localhost/handle/Hannan/4706 | - |
| dc.description.abstract | This paper proposes a Support Vector Regression (SVR) based on Fuzzified Input-output Variables which has good comprehensibility as well as satisfactory generalization capability. SVM provides a mechanism to predict data from training ones. Then, results from proposed Fuzzified SVR-PSO (FSVR-PSO) model are compared with other methods; comparative tests are performed using pipe failures data. The analysis and the experimental results show this method has high comprehensibility as well as satisfactory generalization capability. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | SVR, Fuzzified Input-Output, PSO, failure rates | en_US |
| dc.title | Fuzzified Pipes Dataset to Predict Failure Rates by Hybrid SVR-PSO Algorithm | - |
| dc.type | Article | en_US |
| مجموعه(های): | تمامی گرایش های مدیریت شامل مدیریت بازرگانی و صنعتی | |
پیوست های این کاربرگه
| فایل | توضیحات | اندازه | فرمت | |
|---|---|---|---|---|
| 5.pdf | 647.6 kB | Adobe PDF | ![]() مشاهده فایل |
