جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید. http://localhost/handle/Hannan/4706
عنوان: Fuzzified Pipes Dataset to Predict Failure Rates by Hybrid SVR-PSO Algorithm
کلید واژه ها: SVR, Fuzzified Input-Output, PSO, failure rates
تاریخ انتشار: 2016
چکیده: This paper proposes a Support Vector Regression (SVR) based on Fuzzified Input-output Variables which has good comprehensibility as well as satisfactory generalization capability. SVM provides a mechanism to predict data from training ones. Then, results from proposed Fuzzified SVR-PSO (FSVR-PSO) model are compared with other methods; comparative tests are performed using pipe failures data. The analysis and the experimental results show this method has high comprehensibility as well as satisfactory generalization capability.
آدرس: http://localhost/handle/Hannan/4706
ISSN: 1913-1844
مجموعه(های):تمامی گرایش های مدیریت شامل مدیریت بازرگانی و صنعتی

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
5.pdf647.6 kBAdobe PDFتصویر
مشاهده فایل
عنوان: Fuzzified Pipes Dataset to Predict Failure Rates by Hybrid SVR-PSO Algorithm
کلید واژه ها: SVR, Fuzzified Input-Output, PSO, failure rates
تاریخ انتشار: 2016
چکیده: This paper proposes a Support Vector Regression (SVR) based on Fuzzified Input-output Variables which has good comprehensibility as well as satisfactory generalization capability. SVM provides a mechanism to predict data from training ones. Then, results from proposed Fuzzified SVR-PSO (FSVR-PSO) model are compared with other methods; comparative tests are performed using pipe failures data. The analysis and the experimental results show this method has high comprehensibility as well as satisfactory generalization capability.
آدرس: http://localhost/handle/Hannan/4706
ISSN: 1913-1844
مجموعه(های):تمامی گرایش های مدیریت شامل مدیریت بازرگانی و صنعتی

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
5.pdf647.6 kBAdobe PDFتصویر
مشاهده فایل
عنوان: Fuzzified Pipes Dataset to Predict Failure Rates by Hybrid SVR-PSO Algorithm
کلید واژه ها: SVR, Fuzzified Input-Output, PSO, failure rates
تاریخ انتشار: 2016
چکیده: This paper proposes a Support Vector Regression (SVR) based on Fuzzified Input-output Variables which has good comprehensibility as well as satisfactory generalization capability. SVM provides a mechanism to predict data from training ones. Then, results from proposed Fuzzified SVR-PSO (FSVR-PSO) model are compared with other methods; comparative tests are performed using pipe failures data. The analysis and the experimental results show this method has high comprehensibility as well as satisfactory generalization capability.
آدرس: http://localhost/handle/Hannan/4706
ISSN: 1913-1844
مجموعه(های):تمامی گرایش های مدیریت شامل مدیریت بازرگانی و صنعتی

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
5.pdf647.6 kBAdobe PDFتصویر
مشاهده فایل