Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/375
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCsurka, Gabriela ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-04-28T08:53:20Z-
dc.date.available2020-04-28T08:53:20Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319583471 ; (electronic bk.) ;en_US
dc.identifier.isbn3319583476 ; (electronic bk.) ;en_US
dc.identifier.isbn9783319583464 ;en_US
dc.identifier.isbn3319583468 ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/375-
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionen_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionOriginal ; 3319583468 ; 9783319583464 ; (OCoLC)982593916 ;en_US
dc.description.abstractThis comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: Surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures Presents a positioning of the dataset bias in the CNN-based feature arena Proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data Discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models Addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection Describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning. Dr. Gabriela Csurka is a Senior Scientist in the Computer Vision Team at Xerox Research Centre Europe, Meylan, France ;en_US
dc.description.statementofresponsibilityGabriela Csurka, editoren_US
dc.description.tableofcontentsA Comprehensive Survey on Domain Adaptation for Visual Applications -- A Deeper Look at Dataset Bias.- Part I: Shallow Domain Adaptation Methods -- Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation -- Unsupervised Domain Adaptation based on Subspace Alignment -- Learning Domain Invariant Embeddings by Matching Distributions -- Adaptive Transductive Transfer Machines: A Pipeline for Unsupervised Domain Adaptation -- What To Do When the Access to the Source Data is Constrainede.- Part II: Deep Domain Adaptation Methods -- Correlation Alignment for Unsupervised Domain Adaptation -- Simultaneous Deep Transfer Across Domains and Tasks -- Domain-Adversarial Training of Neural Networks.- Part III: Beyond Image Classification -- Unsupervised Fisher Vector Adaptation for Re-Identification -- Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA -- From Virtual to Real World Visual Perception using Domain Adaptation - The DPM as Example -- Generalizing Semantic Part Detectors Across Domains.- Part IV: Beyond Domain Adaptation: Unifying Perspectives -- A Multi-Source Domain Generalization Approach to Visual Attribute Detection -- Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives ;en_US
dc.format.extent1 online resource ;en_US
dc.format.extentIncludes bibliographical references and index ;en_US
dc.publisherSpringer,en_US
dc.relation.ispartofseriesAdvances in computer vision and pattern recognition ;en_US
dc.relation.ispartofseriesAdvances in computer vision and pattern recognition ;en_US
dc.relation.haspart9783319583471.pdfen_US
dc.subjectComputer vision ;en_US
dc.titleDomain adaptation in computer vision applicationsen_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
dc.classification.lcTA1634 ;en_US
Appears in Collections:مهندسی مدیریت ساخت

Files in This Item:
File Description SizeFormat 
9783319583471.pdf14.58 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCsurka, Gabriela ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-04-28T08:53:20Z-
dc.date.available2020-04-28T08:53:20Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319583471 ; (electronic bk.) ;en_US
dc.identifier.isbn3319583476 ; (electronic bk.) ;en_US
dc.identifier.isbn9783319583464 ;en_US
dc.identifier.isbn3319583468 ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/375-
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionen_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionOriginal ; 3319583468 ; 9783319583464 ; (OCoLC)982593916 ;en_US
dc.description.abstractThis comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: Surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures Presents a positioning of the dataset bias in the CNN-based feature arena Proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data Discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models Addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection Describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning. Dr. Gabriela Csurka is a Senior Scientist in the Computer Vision Team at Xerox Research Centre Europe, Meylan, France ;en_US
dc.description.statementofresponsibilityGabriela Csurka, editoren_US
dc.description.tableofcontentsA Comprehensive Survey on Domain Adaptation for Visual Applications -- A Deeper Look at Dataset Bias.- Part I: Shallow Domain Adaptation Methods -- Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation -- Unsupervised Domain Adaptation based on Subspace Alignment -- Learning Domain Invariant Embeddings by Matching Distributions -- Adaptive Transductive Transfer Machines: A Pipeline for Unsupervised Domain Adaptation -- What To Do When the Access to the Source Data is Constrainede.- Part II: Deep Domain Adaptation Methods -- Correlation Alignment for Unsupervised Domain Adaptation -- Simultaneous Deep Transfer Across Domains and Tasks -- Domain-Adversarial Training of Neural Networks.- Part III: Beyond Image Classification -- Unsupervised Fisher Vector Adaptation for Re-Identification -- Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA -- From Virtual to Real World Visual Perception using Domain Adaptation - The DPM as Example -- Generalizing Semantic Part Detectors Across Domains.- Part IV: Beyond Domain Adaptation: Unifying Perspectives -- A Multi-Source Domain Generalization Approach to Visual Attribute Detection -- Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives ;en_US
dc.format.extent1 online resource ;en_US
dc.format.extentIncludes bibliographical references and index ;en_US
dc.publisherSpringer,en_US
dc.relation.ispartofseriesAdvances in computer vision and pattern recognition ;en_US
dc.relation.ispartofseriesAdvances in computer vision and pattern recognition ;en_US
dc.relation.haspart9783319583471.pdfen_US
dc.subjectComputer vision ;en_US
dc.titleDomain adaptation in computer vision applicationsen_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
dc.classification.lcTA1634 ;en_US
Appears in Collections:مهندسی مدیریت ساخت

Files in This Item:
File Description SizeFormat 
9783319583471.pdf14.58 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCsurka, Gabriela ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-04-28T08:53:20Z-
dc.date.available2020-04-28T08:53:20Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319583471 ; (electronic bk.) ;en_US
dc.identifier.isbn3319583476 ; (electronic bk.) ;en_US
dc.identifier.isbn9783319583464 ;en_US
dc.identifier.isbn3319583468 ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/375-
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionen_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionOriginal ; 3319583468 ; 9783319583464 ; (OCoLC)982593916 ;en_US
dc.description.abstractThis comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: Surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures Presents a positioning of the dataset bias in the CNN-based feature arena Proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data Discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models Addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection Describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning. Dr. Gabriela Csurka is a Senior Scientist in the Computer Vision Team at Xerox Research Centre Europe, Meylan, France ;en_US
dc.description.statementofresponsibilityGabriela Csurka, editoren_US
dc.description.tableofcontentsA Comprehensive Survey on Domain Adaptation for Visual Applications -- A Deeper Look at Dataset Bias.- Part I: Shallow Domain Adaptation Methods -- Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation -- Unsupervised Domain Adaptation based on Subspace Alignment -- Learning Domain Invariant Embeddings by Matching Distributions -- Adaptive Transductive Transfer Machines: A Pipeline for Unsupervised Domain Adaptation -- What To Do When the Access to the Source Data is Constrainede.- Part II: Deep Domain Adaptation Methods -- Correlation Alignment for Unsupervised Domain Adaptation -- Simultaneous Deep Transfer Across Domains and Tasks -- Domain-Adversarial Training of Neural Networks.- Part III: Beyond Image Classification -- Unsupervised Fisher Vector Adaptation for Re-Identification -- Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA -- From Virtual to Real World Visual Perception using Domain Adaptation - The DPM as Example -- Generalizing Semantic Part Detectors Across Domains.- Part IV: Beyond Domain Adaptation: Unifying Perspectives -- A Multi-Source Domain Generalization Approach to Visual Attribute Detection -- Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives ;en_US
dc.format.extent1 online resource ;en_US
dc.format.extentIncludes bibliographical references and index ;en_US
dc.publisherSpringer,en_US
dc.relation.ispartofseriesAdvances in computer vision and pattern recognition ;en_US
dc.relation.ispartofseriesAdvances in computer vision and pattern recognition ;en_US
dc.relation.haspart9783319583471.pdfen_US
dc.subjectComputer vision ;en_US
dc.titleDomain adaptation in computer vision applicationsen_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
dc.classification.lcTA1634 ;en_US
Appears in Collections:مهندسی مدیریت ساخت

Files in This Item:
File Description SizeFormat 
9783319583471.pdf14.58 MBAdobe PDFThumbnail
Preview File