جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید. http://localhost/handle/Hannan/375
عنوان: Domain adaptation in computer vision applications
پدیدآورنده: Csurka, Gabriela ;
کلید واژه ها: Computer vision ;
تاریخ انتشار: 2017
محل نشر: Cham :
ناشر: Springer,
فروست / شماره : Advances in computer vision and pattern recognition ;
Advances in computer vision and pattern recognition ;
چکیده: This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: Surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures Presents a positioning of the dataset bias in the CNN-based feature arena Proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data Discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models Addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection Describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning. Dr. Gabriela Csurka is a Senior Scientist in the Computer Vision Team at Xerox Research Centre Europe, Meylan, France ;
توضیحات : Available to OhioLINK libraries ;

Ohio Library and Information Network ;



QA75.5-76.95 ;


Original ; 3319583468 ; 9783319583464 ; (OCoLC)982593916 ;
آدرس: http://localhost/handle/Hannan/375
شابک : 9783319583471 ; (electronic bk.) ;
3319583476 ; (electronic bk.) ;
9783319583464 ;
3319583468 ;
اطلاعات بیشتر: 1 online resource ;
Includes bibliographical references and index ;
مجموعه(های):مهندسی مدیریت ساخت

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319583471.pdf14.58 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Domain adaptation in computer vision applications
پدیدآورنده: Csurka, Gabriela ;
کلید واژه ها: Computer vision ;
تاریخ انتشار: 2017
محل نشر: Cham :
ناشر: Springer,
فروست / شماره : Advances in computer vision and pattern recognition ;
Advances in computer vision and pattern recognition ;
چکیده: This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: Surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures Presents a positioning of the dataset bias in the CNN-based feature arena Proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data Discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models Addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection Describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning. Dr. Gabriela Csurka is a Senior Scientist in the Computer Vision Team at Xerox Research Centre Europe, Meylan, France ;
توضیحات : Available to OhioLINK libraries ;

Ohio Library and Information Network ;



QA75.5-76.95 ;


Original ; 3319583468 ; 9783319583464 ; (OCoLC)982593916 ;
آدرس: http://localhost/handle/Hannan/375
شابک : 9783319583471 ; (electronic bk.) ;
3319583476 ; (electronic bk.) ;
9783319583464 ;
3319583468 ;
اطلاعات بیشتر: 1 online resource ;
Includes bibliographical references and index ;
مجموعه(های):مهندسی مدیریت ساخت

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319583471.pdf14.58 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Domain adaptation in computer vision applications
پدیدآورنده: Csurka, Gabriela ;
کلید واژه ها: Computer vision ;
تاریخ انتشار: 2017
محل نشر: Cham :
ناشر: Springer,
فروست / شماره : Advances in computer vision and pattern recognition ;
Advances in computer vision and pattern recognition ;
چکیده: This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes. Topics and features: Surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures Presents a positioning of the dataset bias in the CNN-based feature arena Proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data Discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models Addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection Describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning. Dr. Gabriela Csurka is a Senior Scientist in the Computer Vision Team at Xerox Research Centre Europe, Meylan, France ;
توضیحات : Available to OhioLINK libraries ;

Ohio Library and Information Network ;



QA75.5-76.95 ;


Original ; 3319583468 ; 9783319583464 ; (OCoLC)982593916 ;
آدرس: http://localhost/handle/Hannan/375
شابک : 9783319583471 ; (electronic bk.) ;
3319583476 ; (electronic bk.) ;
9783319583464 ;
3319583468 ;
اطلاعات بیشتر: 1 online resource ;
Includes bibliographical references and index ;
مجموعه(های):مهندسی مدیریت ساخت

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319583471.pdf14.58 MBAdobe PDFتصویر
مشاهده فایل