Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/1626
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCerquitelli, Tania. ;en_US
dc.contributor.authorQuercia, Daniele. ;en_US
dc.contributor.authorPasquale, Frank. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:30:26Z-
dc.date.available2020-05-17T08:30:26Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319540245 ;en_US
dc.identifier.isbn9783319540238 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1626-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9783319540238. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches. As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use. ;en_US
dc.description.statementofresponsibilityedited by Tania Cerquitelli, Daniele Quercia, Frank Pasquale.en_US
dc.description.tableofcontentsPart I: Transparent Mining -- Chapter 1: The Tyranny of Datae The Bright and Dark Sides of Data-Driven Decision-Making for Social Good -- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens -- Chapter 3: The Princeton Web Transparency and Accountability Project -- Part II: Algorithmic solutions -- Chapter 4: Algorithmic Transparency via Quantitative Input Influence -- Chapter 5 -- Learning Interpretable Classification Rules with Boolean Compressed Sensing -- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey -- Part III: Regulatory solutions -- Chapter 7: Beyond the EULA: Improving Consent for Data Mining -- Chapter 8: Regulating Algorithms Regulatione First Ethico-legal Principles, Problems and Opportunities of Algorithms -- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring Algorithmic Accountabilitye ;en_US
dc.format.extentXV, 215 p. 23 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesStudies in Big Data, ; 2197-6503 ; ; 11. ;en_US
dc.relation.ispartofseriesStudies in Big Data, ; 2197-6503 ; ; 11. ;en_US
dc.relation.haspart9783319540245.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectBig data. ;en_US
dc.subjectAlgorithmsen_US
dc.subjectData Miningen_US
dc.subjectComputer simulation. ;en_US
dc.subjectInternational law. ;en_US
dc.subjectIntellectual property ; Law and legislation. ;en_US
dc.subjectComplexity, Computational. ;en_US
dc.subjectComputer Scienceen_US
dc.subjectData Mining and Knowledge Discoveryen_US
dc.subjectInteren_US
dc.titleTransparent Data Mining for Big and Small Dataen_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
dc.classification.lcQA76.9.D343 ;en_US
dc.classification.dc006.312 ; 23 ;en_US
Appears in Collections:مهندسی فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319540245.pdf3.45 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCerquitelli, Tania. ;en_US
dc.contributor.authorQuercia, Daniele. ;en_US
dc.contributor.authorPasquale, Frank. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:30:26Z-
dc.date.available2020-05-17T08:30:26Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319540245 ;en_US
dc.identifier.isbn9783319540238 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1626-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9783319540238. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches. As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use. ;en_US
dc.description.statementofresponsibilityedited by Tania Cerquitelli, Daniele Quercia, Frank Pasquale.en_US
dc.description.tableofcontentsPart I: Transparent Mining -- Chapter 1: The Tyranny of Datae The Bright and Dark Sides of Data-Driven Decision-Making for Social Good -- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens -- Chapter 3: The Princeton Web Transparency and Accountability Project -- Part II: Algorithmic solutions -- Chapter 4: Algorithmic Transparency via Quantitative Input Influence -- Chapter 5 -- Learning Interpretable Classification Rules with Boolean Compressed Sensing -- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey -- Part III: Regulatory solutions -- Chapter 7: Beyond the EULA: Improving Consent for Data Mining -- Chapter 8: Regulating Algorithms Regulatione First Ethico-legal Principles, Problems and Opportunities of Algorithms -- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring Algorithmic Accountabilitye ;en_US
dc.format.extentXV, 215 p. 23 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesStudies in Big Data, ; 2197-6503 ; ; 11. ;en_US
dc.relation.ispartofseriesStudies in Big Data, ; 2197-6503 ; ; 11. ;en_US
dc.relation.haspart9783319540245.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectBig data. ;en_US
dc.subjectAlgorithmsen_US
dc.subjectData Miningen_US
dc.subjectComputer simulation. ;en_US
dc.subjectInternational law. ;en_US
dc.subjectIntellectual property ; Law and legislation. ;en_US
dc.subjectComplexity, Computational. ;en_US
dc.subjectComputer Scienceen_US
dc.subjectData Mining and Knowledge Discoveryen_US
dc.subjectInteren_US
dc.titleTransparent Data Mining for Big and Small Dataen_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
dc.classification.lcQA76.9.D343 ;en_US
dc.classification.dc006.312 ; 23 ;en_US
Appears in Collections:مهندسی فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319540245.pdf3.45 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCerquitelli, Tania. ;en_US
dc.contributor.authorQuercia, Daniele. ;en_US
dc.contributor.authorPasquale, Frank. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:30:26Z-
dc.date.available2020-05-17T08:30:26Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319540245 ;en_US
dc.identifier.isbn9783319540238 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1626-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9783319540238. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches. As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use. ;en_US
dc.description.statementofresponsibilityedited by Tania Cerquitelli, Daniele Quercia, Frank Pasquale.en_US
dc.description.tableofcontentsPart I: Transparent Mining -- Chapter 1: The Tyranny of Datae The Bright and Dark Sides of Data-Driven Decision-Making for Social Good -- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens -- Chapter 3: The Princeton Web Transparency and Accountability Project -- Part II: Algorithmic solutions -- Chapter 4: Algorithmic Transparency via Quantitative Input Influence -- Chapter 5 -- Learning Interpretable Classification Rules with Boolean Compressed Sensing -- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey -- Part III: Regulatory solutions -- Chapter 7: Beyond the EULA: Improving Consent for Data Mining -- Chapter 8: Regulating Algorithms Regulatione First Ethico-legal Principles, Problems and Opportunities of Algorithms -- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring Algorithmic Accountabilitye ;en_US
dc.format.extentXV, 215 p. 23 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesStudies in Big Data, ; 2197-6503 ; ; 11. ;en_US
dc.relation.ispartofseriesStudies in Big Data, ; 2197-6503 ; ; 11. ;en_US
dc.relation.haspart9783319540245.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectBig data. ;en_US
dc.subjectAlgorithmsen_US
dc.subjectData Miningen_US
dc.subjectComputer simulation. ;en_US
dc.subjectInternational law. ;en_US
dc.subjectIntellectual property ; Law and legislation. ;en_US
dc.subjectComplexity, Computational. ;en_US
dc.subjectComputer Scienceen_US
dc.subjectData Mining and Knowledge Discoveryen_US
dc.subjectInteren_US
dc.titleTransparent Data Mining for Big and Small Dataen_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
dc.classification.lcQA76.9.D343 ;en_US
dc.classification.dc006.312 ; 23 ;en_US
Appears in Collections:مهندسی فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319540245.pdf3.45 MBAdobe PDFThumbnail
Preview File