جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید. http://localhost/handle/Hannan/1626
عنوان: Transparent Data Mining for Big and Small Data
پدیدآورنده: Cerquitelli, Tania. ;;Quercia, Daniele. ;;Pasquale, Frank. ;
کلید واژه ها: Computer Science;Big data. ;;Algorithms;Data Mining;Computer simulation. ;;International law. ;;Intellectual property ; Law and legislation. ;;Complexity, Computational. ;;Computer Science;Data Mining and Knowledge Discovery;Inter
تاریخ انتشار: 2017
محل نشر: Cham :
ناشر: Springer International Publishing :
Imprint: Springer,
فروست / شماره : Studies in Big Data, ; 2197-6503 ; ; 11. ;
Studies in Big Data, ; 2197-6503 ; ; 11. ;
چکیده: This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches. As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use. ;
توضیحات : 


SpringerLink (Online service) ;
Printed edition: ; 9783319540238. ;

آدرس: http://localhost/handle/Hannan/1626
شابک : 9783319540245 ;
9783319540238 (print) ;
اطلاعات بیشتر: XV, 215 p. 23 illus. in color. ; online resource. ;
مجموعه(های):مهندسی فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319540245.pdf3.45 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Transparent Data Mining for Big and Small Data
پدیدآورنده: Cerquitelli, Tania. ;;Quercia, Daniele. ;;Pasquale, Frank. ;
کلید واژه ها: Computer Science;Big data. ;;Algorithms;Data Mining;Computer simulation. ;;International law. ;;Intellectual property ; Law and legislation. ;;Complexity, Computational. ;;Computer Science;Data Mining and Knowledge Discovery;Inter
تاریخ انتشار: 2017
محل نشر: Cham :
ناشر: Springer International Publishing :
Imprint: Springer,
فروست / شماره : Studies in Big Data, ; 2197-6503 ; ; 11. ;
Studies in Big Data, ; 2197-6503 ; ; 11. ;
چکیده: This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches. As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use. ;
توضیحات : 


SpringerLink (Online service) ;
Printed edition: ; 9783319540238. ;

آدرس: http://localhost/handle/Hannan/1626
شابک : 9783319540245 ;
9783319540238 (print) ;
اطلاعات بیشتر: XV, 215 p. 23 illus. in color. ; online resource. ;
مجموعه(های):مهندسی فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319540245.pdf3.45 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Transparent Data Mining for Big and Small Data
پدیدآورنده: Cerquitelli, Tania. ;;Quercia, Daniele. ;;Pasquale, Frank. ;
کلید واژه ها: Computer Science;Big data. ;;Algorithms;Data Mining;Computer simulation. ;;International law. ;;Intellectual property ; Law and legislation. ;;Complexity, Computational. ;;Computer Science;Data Mining and Knowledge Discovery;Inter
تاریخ انتشار: 2017
محل نشر: Cham :
ناشر: Springer International Publishing :
Imprint: Springer,
فروست / شماره : Studies in Big Data, ; 2197-6503 ; ; 11. ;
Studies in Big Data, ; 2197-6503 ; ; 11. ;
چکیده: This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches. As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use. ;
توضیحات : 


SpringerLink (Online service) ;
Printed edition: ; 9783319540238. ;

آدرس: http://localhost/handle/Hannan/1626
شابک : 9783319540245 ;
9783319540238 (print) ;
اطلاعات بیشتر: XV, 215 p. 23 illus. in color. ; online resource. ;
مجموعه(های):مهندسی فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319540245.pdf3.45 MBAdobe PDFتصویر
مشاهده فایل