Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/1386
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMasters, Timothy. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:28:22Z-
dc.date.available2020-05-17T08:28:22Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484233368 ;en_US
dc.identifier.isbn9781484233351 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1386-
dc.descriptionen_US
dc.descriptionQA76en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484233351. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractCarry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment.e Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique.e You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. ;en_US
dc.description.statementofresponsibilityby Timothy Masters.en_US
dc.format.extentXX, 517 p. 26 illus., 8 illus. in color. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484233351.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematical statistics. ;en_US
dc.subjectArtificial Intelligenceen_US
dc.subjectStatistics. ;en_US
dc.subjectComputer Scienceen_US
dc.subjectBig Data. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectProbability and Statistics in Computer Science. ;en_US
dc.subjectStatistics, general. ;en_US
dc.titleAssessing and Improving Prediction and Classificationen_US
dc.title.alternativeTheory and Algorithms in C++ /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484233351.pdf5.19 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMasters, Timothy. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:28:22Z-
dc.date.available2020-05-17T08:28:22Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484233368 ;en_US
dc.identifier.isbn9781484233351 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1386-
dc.descriptionen_US
dc.descriptionQA76en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484233351. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractCarry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment.e Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique.e You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. ;en_US
dc.description.statementofresponsibilityby Timothy Masters.en_US
dc.format.extentXX, 517 p. 26 illus., 8 illus. in color. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484233351.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematical statistics. ;en_US
dc.subjectArtificial Intelligenceen_US
dc.subjectStatistics. ;en_US
dc.subjectComputer Scienceen_US
dc.subjectBig Data. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectProbability and Statistics in Computer Science. ;en_US
dc.subjectStatistics, general. ;en_US
dc.titleAssessing and Improving Prediction and Classificationen_US
dc.title.alternativeTheory and Algorithms in C++ /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484233351.pdf5.19 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMasters, Timothy. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:28:22Z-
dc.date.available2020-05-17T08:28:22Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484233368 ;en_US
dc.identifier.isbn9781484233351 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1386-
dc.descriptionen_US
dc.descriptionQA76en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484233351. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractCarry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment.e Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique.e You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. ;en_US
dc.description.statementofresponsibilityby Timothy Masters.en_US
dc.format.extentXX, 517 p. 26 illus., 8 illus. in color. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484233351.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematical statistics. ;en_US
dc.subjectArtificial Intelligenceen_US
dc.subjectStatistics. ;en_US
dc.subjectComputer Scienceen_US
dc.subjectBig Data. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectProbability and Statistics in Computer Science. ;en_US
dc.subjectStatistics, general. ;en_US
dc.titleAssessing and Improving Prediction and Classificationen_US
dc.title.alternativeTheory and Algorithms in C++ /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484233351.pdf5.19 MBAdobe PDFThumbnail
Preview File