جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید.
http://localhost/handle/Hannan/1386
عنوان: | Assessing and Improving Prediction and Classification |
عنوان دیگر: | Theory and Algorithms in C++ / |
پدیدآورنده: | Masters, Timothy. ; |
کلید واژه ها: | Computer Science;Mathematical statistics. ;;Artificial Intelligence;Statistics. ;;Computer Science;Big Data. ;;Artificial Intelligence and Robotics;Probability and Statistics in Computer Science. ;;Statistics, general. ; |
تاریخ انتشار: | 2018 |
محل نشر: | Berkeley, CA : |
ناشر: | Apress : Imprint: Apress, |
چکیده: | Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment.e Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique.e You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. ; |
توضیحات : | QA76 SpringerLink (Online service) ; Printed edition: ; 9781484233351. ; |
آدرس: | http://localhost/handle/Hannan/1386 |
شابک : | 9781484233368 ; 9781484233351 (print) ; |
اطلاعات بیشتر: | XX, 517 p. 26 illus., 8 illus. in color. ; online resource. ; |
مجموعه(های): | مدیریت فناوری اطلاعات |
پیوست های این کاربرگه
فایل | توضیحات | اندازه | فرمت | |
---|---|---|---|---|
9781484233351.pdf | 5.19 MB | Adobe PDF | مشاهده فایل |
عنوان: | Assessing and Improving Prediction and Classification |
عنوان دیگر: | Theory and Algorithms in C++ / |
پدیدآورنده: | Masters, Timothy. ; |
کلید واژه ها: | Computer Science;Mathematical statistics. ;;Artificial Intelligence;Statistics. ;;Computer Science;Big Data. ;;Artificial Intelligence and Robotics;Probability and Statistics in Computer Science. ;;Statistics, general. ; |
تاریخ انتشار: | 2018 |
محل نشر: | Berkeley, CA : |
ناشر: | Apress : Imprint: Apress, |
چکیده: | Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment.e Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique.e You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. ; |
توضیحات : | QA76 SpringerLink (Online service) ; Printed edition: ; 9781484233351. ; |
آدرس: | http://localhost/handle/Hannan/1386 |
شابک : | 9781484233368 ; 9781484233351 (print) ; |
اطلاعات بیشتر: | XX, 517 p. 26 illus., 8 illus. in color. ; online resource. ; |
مجموعه(های): | مدیریت فناوری اطلاعات |
پیوست های این کاربرگه
فایل | توضیحات | اندازه | فرمت | |
---|---|---|---|---|
9781484233351.pdf | 5.19 MB | Adobe PDF | مشاهده فایل |
عنوان: | Assessing and Improving Prediction and Classification |
عنوان دیگر: | Theory and Algorithms in C++ / |
پدیدآورنده: | Masters, Timothy. ; |
کلید واژه ها: | Computer Science;Mathematical statistics. ;;Artificial Intelligence;Statistics. ;;Computer Science;Big Data. ;;Artificial Intelligence and Robotics;Probability and Statistics in Computer Science. ;;Statistics, general. ; |
تاریخ انتشار: | 2018 |
محل نشر: | Berkeley, CA : |
ناشر: | Apress : Imprint: Apress, |
چکیده: | Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment.e Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique.e You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. ; |
توضیحات : | QA76 SpringerLink (Online service) ; Printed edition: ; 9781484233351. ; |
آدرس: | http://localhost/handle/Hannan/1386 |
شابک : | 9781484233368 ; 9781484233351 (print) ; |
اطلاعات بیشتر: | XX, 517 p. 26 illus., 8 illus. in color. ; online resource. ; |
مجموعه(های): | مدیریت فناوری اطلاعات |
پیوست های این کاربرگه
فایل | توضیحات | اندازه | فرمت | |
---|---|---|---|---|
9781484233351.pdf | 5.19 MB | Adobe PDF | مشاهده فایل |