Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/970
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAppice, Annalisa. ;en_US
dc.contributor.authorLoglisci, Corrado. ;en_US
dc.contributor.authorManco, Giuseppe. ;en_US
dc.contributor.authorMasciari, Elio. ;en_US
dc.contributor.authorRas, Zbigniew W. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:24:00Z-
dc.date.available2020-05-17T08:24:00Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319786803 ;en_US
dc.identifier.isbn9783319786797 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/970-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9783319786797. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis book features a collection of revised and significantly extended versions of the papers accepted for presentation at the 6th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2017, held in conjunction with ECML-PKDD 2017 in Skopje, Macedonia, in September 2017. The book is composed of five parts: feature selection and induction; classification prediction; clustering; pattern discovery; applications. The workshop was aimed at discussing and introducing new algorithmic foundations and representation formalisms in complex pattern discovery. Finally, it encouraged the integration of recent results from existing fields, such as Statistics, Machine Learning and Big Data Analytics. ;en_US
dc.description.statementofresponsibilityedited by Annalisa Appice, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras.en_US
dc.description.tableofcontentsLearning Association Rules for Pharmacogenomic Studies -- Segment-Removal Based Stuttered Speech Remediation -- Identifying lncRNA-disease Relationships via Heterogeneous Clustering -- Density Estimators for Positive-Unlabeled Learning -- Combinatorial Optimization Algorithms to Mine a Sub-Matrix of Maximal Sum -- A Scaled-Correlation Based Approach for Defining and analyzing functional networks -- Complex Localization in the Multiple Instance Learning Context -- Integrating a Framework for Discovering Alternative App Stores in a Mobile App Monitoring Platform -- Usefulness of Unsupervised Ensemble Learning Methods for Time Series Forecasting of Aggregated or Clustered Load -- Phenotype Prediction with Semi-supervised Classification Trees -- Structuring the Output Space in Multi-label Classification by Using Feature Ranking -- Infinite Mixtures of Markov Chains -- Community-based Semantic Subgroup Discovery. ;en_US
dc.format.extentXII, 197 p. 57 illus. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 10785. ;en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 10785. ;en_US
dc.relation.haspart9783319786797.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectArithmetic and logic units, Computer. ;en_US
dc.subjectData Miningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectApplication Softwareen_US
dc.subjectComputer Scienceen_US
dc.subjectData Mining and Knowledge Discoveryen_US
dc.subjectArithmetic and Logic Structures. ;en_US
dc.subjectComputer Appl. in Social and Behavioral Sciences. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subject.ddc006.312 ; 23 ;en_US
dc.subject.lccQA76.9.D343 ;en_US
dc.titleNew Frontiers in Mining Complex Patternsen_US
dc.title.alternative6th International Workshop, NFMCP 2017, Held in Conjunction with ECML-PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Revised Selected Papers /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319786797.pdf14.43 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAppice, Annalisa. ;en_US
dc.contributor.authorLoglisci, Corrado. ;en_US
dc.contributor.authorManco, Giuseppe. ;en_US
dc.contributor.authorMasciari, Elio. ;en_US
dc.contributor.authorRas, Zbigniew W. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:24:00Z-
dc.date.available2020-05-17T08:24:00Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319786803 ;en_US
dc.identifier.isbn9783319786797 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/970-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9783319786797. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis book features a collection of revised and significantly extended versions of the papers accepted for presentation at the 6th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2017, held in conjunction with ECML-PKDD 2017 in Skopje, Macedonia, in September 2017. The book is composed of five parts: feature selection and induction; classification prediction; clustering; pattern discovery; applications. The workshop was aimed at discussing and introducing new algorithmic foundations and representation formalisms in complex pattern discovery. Finally, it encouraged the integration of recent results from existing fields, such as Statistics, Machine Learning and Big Data Analytics. ;en_US
dc.description.statementofresponsibilityedited by Annalisa Appice, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras.en_US
dc.description.tableofcontentsLearning Association Rules for Pharmacogenomic Studies -- Segment-Removal Based Stuttered Speech Remediation -- Identifying lncRNA-disease Relationships via Heterogeneous Clustering -- Density Estimators for Positive-Unlabeled Learning -- Combinatorial Optimization Algorithms to Mine a Sub-Matrix of Maximal Sum -- A Scaled-Correlation Based Approach for Defining and analyzing functional networks -- Complex Localization in the Multiple Instance Learning Context -- Integrating a Framework for Discovering Alternative App Stores in a Mobile App Monitoring Platform -- Usefulness of Unsupervised Ensemble Learning Methods for Time Series Forecasting of Aggregated or Clustered Load -- Phenotype Prediction with Semi-supervised Classification Trees -- Structuring the Output Space in Multi-label Classification by Using Feature Ranking -- Infinite Mixtures of Markov Chains -- Community-based Semantic Subgroup Discovery. ;en_US
dc.format.extentXII, 197 p. 57 illus. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 10785. ;en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 10785. ;en_US
dc.relation.haspart9783319786797.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectArithmetic and logic units, Computer. ;en_US
dc.subjectData Miningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectApplication Softwareen_US
dc.subjectComputer Scienceen_US
dc.subjectData Mining and Knowledge Discoveryen_US
dc.subjectArithmetic and Logic Structures. ;en_US
dc.subjectComputer Appl. in Social and Behavioral Sciences. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subject.ddc006.312 ; 23 ;en_US
dc.subject.lccQA76.9.D343 ;en_US
dc.titleNew Frontiers in Mining Complex Patternsen_US
dc.title.alternative6th International Workshop, NFMCP 2017, Held in Conjunction with ECML-PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Revised Selected Papers /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319786797.pdf14.43 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAppice, Annalisa. ;en_US
dc.contributor.authorLoglisci, Corrado. ;en_US
dc.contributor.authorManco, Giuseppe. ;en_US
dc.contributor.authorMasciari, Elio. ;en_US
dc.contributor.authorRas, Zbigniew W. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:24:00Z-
dc.date.available2020-05-17T08:24:00Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319786803 ;en_US
dc.identifier.isbn9783319786797 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/970-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9783319786797. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis book features a collection of revised and significantly extended versions of the papers accepted for presentation at the 6th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2017, held in conjunction with ECML-PKDD 2017 in Skopje, Macedonia, in September 2017. The book is composed of five parts: feature selection and induction; classification prediction; clustering; pattern discovery; applications. The workshop was aimed at discussing and introducing new algorithmic foundations and representation formalisms in complex pattern discovery. Finally, it encouraged the integration of recent results from existing fields, such as Statistics, Machine Learning and Big Data Analytics. ;en_US
dc.description.statementofresponsibilityedited by Annalisa Appice, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras.en_US
dc.description.tableofcontentsLearning Association Rules for Pharmacogenomic Studies -- Segment-Removal Based Stuttered Speech Remediation -- Identifying lncRNA-disease Relationships via Heterogeneous Clustering -- Density Estimators for Positive-Unlabeled Learning -- Combinatorial Optimization Algorithms to Mine a Sub-Matrix of Maximal Sum -- A Scaled-Correlation Based Approach for Defining and analyzing functional networks -- Complex Localization in the Multiple Instance Learning Context -- Integrating a Framework for Discovering Alternative App Stores in a Mobile App Monitoring Platform -- Usefulness of Unsupervised Ensemble Learning Methods for Time Series Forecasting of Aggregated or Clustered Load -- Phenotype Prediction with Semi-supervised Classification Trees -- Structuring the Output Space in Multi-label Classification by Using Feature Ranking -- Infinite Mixtures of Markov Chains -- Community-based Semantic Subgroup Discovery. ;en_US
dc.format.extentXII, 197 p. 57 illus. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 10785. ;en_US
dc.relation.ispartofseriesLecture Notes in Computer Science, ; 0302-9743 ; ; 10785. ;en_US
dc.relation.haspart9783319786797.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectArithmetic and logic units, Computer. ;en_US
dc.subjectData Miningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectApplication Softwareen_US
dc.subjectComputer Scienceen_US
dc.subjectData Mining and Knowledge Discoveryen_US
dc.subjectArithmetic and Logic Structures. ;en_US
dc.subjectComputer Appl. in Social and Behavioral Sciences. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subject.ddc006.312 ; 23 ;en_US
dc.subject.lccQA76.9.D343 ;en_US
dc.titleNew Frontiers in Mining Complex Patternsen_US
dc.title.alternative6th International Workshop, NFMCP 2017, Held in Conjunction with ECML-PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Revised Selected Papers /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319786797.pdf14.43 MBAdobe PDFThumbnail
Preview File