Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/879
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDinov, Ivo D. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:23:02Z-
dc.date.available2020-05-17T08:23:02Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319723471 ;en_US
dc.identifier.isbn9783319723464 (print) ;en_US
dc.identifier.isbn9783319723488 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/879-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9783319723464. ;en_US
dc.description005.7 ; 23 ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319723488. ;en_US
dc.descriptionen_US
dc.description.abstractOver the past decade, Big Data have become ubiquitous in all economic sectors, scientific disciplines, and human activities. They have led to striking technological advances, affecting all human experiences. Our ability to manage, understand, interrogate, and interpret such extremely large, multisource, heterogeneous, incomplete, multiscale, and incongruent data has not kept pace with the rapid increase of the volume, complexity and proliferation of the deluge of digital information. There are three reasons for this shortfall. First, the volume of data is increasing much faster than the corresponding rise of our computational processing power (Kryderees law > Mooreees law). Second, traditional discipline-bounds inhibit expeditious progress. Third, our education and training activities have fallen behind the accelerated trend of scientific, information, and communication advances. There are very few rigorous instructional resources, interactive learning materials, and dynamic training environments that support active data science learning. The textbook balances the mathematical foundations with dexterous demonstrations and examples of data, tools, modules and workflows that serve as pillars for the urgently needed bridge to close that supply and demand predictive analytic skills gap. Exposing the enormous opportunities presented by the tsunami of Big data, this textbook aims to identify specific knowledge gaps, educational barriers, and workforce readiness deficiencies. Specifically, it focuses on the development of a transdisciplinary curriculum integrating modern computational methods, advanced data science techniques, innovative biomedical applications, and impactful health analytics. The content of this graduate-level textbook fills a substantial gap in integrating modern engineering concepts, computational algorithms, mathematical optimization, statistical computing and biomedical inference. Big data analytic techniques and predictive scientific methods demand broad transdisciplinary knowledge, appeal to an extremely wide spectrum of readers/learners, and provide incredible opportunities for engagement throughout the academy, industry, regulatory and funding agencies. ;en_US
dc.description.statementofresponsibilityby Ivo D. Dinov.en_US
dc.description.tableofcontents1 Introduction -- 2 Foundations of R -- 3 Managing Data in R -- 4 Data Visualization -- 5 Linear Algebra & Matrix Computing -- 6 Dimensionality Reduction -- 7 Lazy Learning: Classification Using Nearest Neighbors -- 8 Probabilistic Learning: Classification Using Naive Bayes -- 9 Decision Tree Divide and Conquer Classification -- 10 Forecasting Numeric Data Using Regression Models -- 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines -- 12 Apriori Association Rules Learning -- 13 k-Means Clustering -- 14 Model Performance Assessment -- 15 Improving Model Performance -- 16 Specialized Machine Learning Topics -- 17 Variable/Feature Selection -- 18 Regularized Linear Modeling and Controlled Variable Selection -- 19 Big Longitudinal Data Analysis -- 20 Natural Language Processing/Text Mining -- 21 Prediction and Internal Statistical Cross Validation -- 22 Function Optimization -- 23 Deep Learning Neural Networks -- 24 Summary -- 25 Glossary -- 26 Index -- 27 Errata. ;en_US
dc.format.extentXXXIV, 832 p. 1443 illus., 1245 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.haspart9783319723464.pdfen_US
dc.subjectBig data. ;en_US
dc.subjectMedical records ; Data processing. ;en_US
dc.subjectComputer Scienceen_US
dc.subjectData Miningen_US
dc.subjectBig Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;en_US
dc.subjectBig Data/Analytics. ; http://scigraph.springernature.com/things/product-market-codes/522070. ;en_US
dc.subjectHealth Informatics. ; http://scigraph.springernature.com/things/product-market-codes/H28009. ;en_US
dc.subjectProbability and Statistics in Computer Science. ; http://scigraph.springernature.com/things/product-market-codes/I17036. ;en_US
dc.subjectData Mining and Knowledge Discovery. ; http://scigraph.springernature.com/things/product-market-codes/I18030. ;en_US
dc.subject.lccQA76.9.B45 ;en_US
dc.titleData Science and Predictive Analyticsen_US
dc.title.alternativeBiomedical and Health Applications using R /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319723464.pdf67 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDinov, Ivo D. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:23:02Z-
dc.date.available2020-05-17T08:23:02Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319723471 ;en_US
dc.identifier.isbn9783319723464 (print) ;en_US
dc.identifier.isbn9783319723488 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/879-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9783319723464. ;en_US
dc.description005.7 ; 23 ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319723488. ;en_US
dc.descriptionen_US
dc.description.abstractOver the past decade, Big Data have become ubiquitous in all economic sectors, scientific disciplines, and human activities. They have led to striking technological advances, affecting all human experiences. Our ability to manage, understand, interrogate, and interpret such extremely large, multisource, heterogeneous, incomplete, multiscale, and incongruent data has not kept pace with the rapid increase of the volume, complexity and proliferation of the deluge of digital information. There are three reasons for this shortfall. First, the volume of data is increasing much faster than the corresponding rise of our computational processing power (Kryderees law > Mooreees law). Second, traditional discipline-bounds inhibit expeditious progress. Third, our education and training activities have fallen behind the accelerated trend of scientific, information, and communication advances. There are very few rigorous instructional resources, interactive learning materials, and dynamic training environments that support active data science learning. The textbook balances the mathematical foundations with dexterous demonstrations and examples of data, tools, modules and workflows that serve as pillars for the urgently needed bridge to close that supply and demand predictive analytic skills gap. Exposing the enormous opportunities presented by the tsunami of Big data, this textbook aims to identify specific knowledge gaps, educational barriers, and workforce readiness deficiencies. Specifically, it focuses on the development of a transdisciplinary curriculum integrating modern computational methods, advanced data science techniques, innovative biomedical applications, and impactful health analytics. The content of this graduate-level textbook fills a substantial gap in integrating modern engineering concepts, computational algorithms, mathematical optimization, statistical computing and biomedical inference. Big data analytic techniques and predictive scientific methods demand broad transdisciplinary knowledge, appeal to an extremely wide spectrum of readers/learners, and provide incredible opportunities for engagement throughout the academy, industry, regulatory and funding agencies. ;en_US
dc.description.statementofresponsibilityby Ivo D. Dinov.en_US
dc.description.tableofcontents1 Introduction -- 2 Foundations of R -- 3 Managing Data in R -- 4 Data Visualization -- 5 Linear Algebra & Matrix Computing -- 6 Dimensionality Reduction -- 7 Lazy Learning: Classification Using Nearest Neighbors -- 8 Probabilistic Learning: Classification Using Naive Bayes -- 9 Decision Tree Divide and Conquer Classification -- 10 Forecasting Numeric Data Using Regression Models -- 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines -- 12 Apriori Association Rules Learning -- 13 k-Means Clustering -- 14 Model Performance Assessment -- 15 Improving Model Performance -- 16 Specialized Machine Learning Topics -- 17 Variable/Feature Selection -- 18 Regularized Linear Modeling and Controlled Variable Selection -- 19 Big Longitudinal Data Analysis -- 20 Natural Language Processing/Text Mining -- 21 Prediction and Internal Statistical Cross Validation -- 22 Function Optimization -- 23 Deep Learning Neural Networks -- 24 Summary -- 25 Glossary -- 26 Index -- 27 Errata. ;en_US
dc.format.extentXXXIV, 832 p. 1443 illus., 1245 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.haspart9783319723464.pdfen_US
dc.subjectBig data. ;en_US
dc.subjectMedical records ; Data processing. ;en_US
dc.subjectComputer Scienceen_US
dc.subjectData Miningen_US
dc.subjectBig Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;en_US
dc.subjectBig Data/Analytics. ; http://scigraph.springernature.com/things/product-market-codes/522070. ;en_US
dc.subjectHealth Informatics. ; http://scigraph.springernature.com/things/product-market-codes/H28009. ;en_US
dc.subjectProbability and Statistics in Computer Science. ; http://scigraph.springernature.com/things/product-market-codes/I17036. ;en_US
dc.subjectData Mining and Knowledge Discovery. ; http://scigraph.springernature.com/things/product-market-codes/I18030. ;en_US
dc.subject.lccQA76.9.B45 ;en_US
dc.titleData Science and Predictive Analyticsen_US
dc.title.alternativeBiomedical and Health Applications using R /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319723464.pdf67 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDinov, Ivo D. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:23:02Z-
dc.date.available2020-05-17T08:23:02Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319723471 ;en_US
dc.identifier.isbn9783319723464 (print) ;en_US
dc.identifier.isbn9783319723488 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/879-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9783319723464. ;en_US
dc.description005.7 ; 23 ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9783319723488. ;en_US
dc.descriptionen_US
dc.description.abstractOver the past decade, Big Data have become ubiquitous in all economic sectors, scientific disciplines, and human activities. They have led to striking technological advances, affecting all human experiences. Our ability to manage, understand, interrogate, and interpret such extremely large, multisource, heterogeneous, incomplete, multiscale, and incongruent data has not kept pace with the rapid increase of the volume, complexity and proliferation of the deluge of digital information. There are three reasons for this shortfall. First, the volume of data is increasing much faster than the corresponding rise of our computational processing power (Kryderees law > Mooreees law). Second, traditional discipline-bounds inhibit expeditious progress. Third, our education and training activities have fallen behind the accelerated trend of scientific, information, and communication advances. There are very few rigorous instructional resources, interactive learning materials, and dynamic training environments that support active data science learning. The textbook balances the mathematical foundations with dexterous demonstrations and examples of data, tools, modules and workflows that serve as pillars for the urgently needed bridge to close that supply and demand predictive analytic skills gap. Exposing the enormous opportunities presented by the tsunami of Big data, this textbook aims to identify specific knowledge gaps, educational barriers, and workforce readiness deficiencies. Specifically, it focuses on the development of a transdisciplinary curriculum integrating modern computational methods, advanced data science techniques, innovative biomedical applications, and impactful health analytics. The content of this graduate-level textbook fills a substantial gap in integrating modern engineering concepts, computational algorithms, mathematical optimization, statistical computing and biomedical inference. Big data analytic techniques and predictive scientific methods demand broad transdisciplinary knowledge, appeal to an extremely wide spectrum of readers/learners, and provide incredible opportunities for engagement throughout the academy, industry, regulatory and funding agencies. ;en_US
dc.description.statementofresponsibilityby Ivo D. Dinov.en_US
dc.description.tableofcontents1 Introduction -- 2 Foundations of R -- 3 Managing Data in R -- 4 Data Visualization -- 5 Linear Algebra & Matrix Computing -- 6 Dimensionality Reduction -- 7 Lazy Learning: Classification Using Nearest Neighbors -- 8 Probabilistic Learning: Classification Using Naive Bayes -- 9 Decision Tree Divide and Conquer Classification -- 10 Forecasting Numeric Data Using Regression Models -- 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines -- 12 Apriori Association Rules Learning -- 13 k-Means Clustering -- 14 Model Performance Assessment -- 15 Improving Model Performance -- 16 Specialized Machine Learning Topics -- 17 Variable/Feature Selection -- 18 Regularized Linear Modeling and Controlled Variable Selection -- 19 Big Longitudinal Data Analysis -- 20 Natural Language Processing/Text Mining -- 21 Prediction and Internal Statistical Cross Validation -- 22 Function Optimization -- 23 Deep Learning Neural Networks -- 24 Summary -- 25 Glossary -- 26 Index -- 27 Errata. ;en_US
dc.format.extentXXXIV, 832 p. 1443 illus., 1245 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.haspart9783319723464.pdfen_US
dc.subjectBig data. ;en_US
dc.subjectMedical records ; Data processing. ;en_US
dc.subjectComputer Scienceen_US
dc.subjectData Miningen_US
dc.subjectBig Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;en_US
dc.subjectBig Data/Analytics. ; http://scigraph.springernature.com/things/product-market-codes/522070. ;en_US
dc.subjectHealth Informatics. ; http://scigraph.springernature.com/things/product-market-codes/H28009. ;en_US
dc.subjectProbability and Statistics in Computer Science. ; http://scigraph.springernature.com/things/product-market-codes/I17036. ;en_US
dc.subjectData Mining and Knowledge Discovery. ; http://scigraph.springernature.com/things/product-market-codes/I18030. ;en_US
dc.subject.lccQA76.9.B45 ;en_US
dc.titleData Science and Predictive Analyticsen_US
dc.title.alternativeBiomedical and Health Applications using R /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319723464.pdf67 MBAdobe PDFThumbnail
Preview File