Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/835
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Kwangjo. ;en_US
dc.contributor.authorAminanto, Muhamad Erza. ;en_US
dc.contributor.authorTanuwidjaja, Harry Chandra. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:22:33Z-
dc.date.available2020-05-17T08:22:33Z-
dc.date.issued2018en_US
dc.identifier.isbn9789811314445 ;en_US
dc.identifier.isbn9789811314438 (print) ;en_US
dc.identifier.isbn9789811314452 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/835-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314438. ;en_US
dc.descriptionQA76.9.A25 ;en_US
dc.description005.8 ; 23 ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314452. ;en_US
dc.descriptionen_US
dc.description.abstractThis book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity. ;en_US
dc.description.statementofresponsibilityby Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja.en_US
dc.description.tableofcontentsChapter 1 Introduction -- Chapter 2 Intrusion Detection Systems -- Chapter 3 Classical Machine Learning and Its Applications to IDS -- Chapter 4 Deep Learning -- Chapter 5 Deep Learning-based IDSs -- Chapter 6 Deep Feature Learning -- Chapter 7 Summary and Further Challenges. ;en_US
dc.format.extentXVII, 79 p. 30 illus., 11 illus. in color. ; online resource. ;en_US
dc.publisherSpringer Singapore :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesSpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ;en_US
dc.relation.ispartofseriesSpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ;en_US
dc.relation.haspart9789811314438.pdfen_US
dc.subjectData protection. ;en_US
dc.subjectArtificial Intelligenceen_US
dc.subjectWireless communication systems. ;en_US
dc.subjectMobile communication systems. ;en_US
dc.subjectBig data. ;en_US
dc.subjectData Miningen_US
dc.subjectSecurity. ; http://scigraph.springernature.com/things/product-market-codes/I28000. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectSystems and Data Security. ; http://scigraph.springernature.com/things/product-market-codes/I14050. ;en_US
dc.subjectWireless and Mobile Communication. ; http://scigraph.springernature.com/things/product-market-codes/T24100. ;en_US
dc.subjectBig Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;en_US
dc.subjectData Mining and Knowledge Discovery. ; http://scigraph.springernature.com/things/product-market-codes/I18030. ;en_US
dc.titleNetwork Intrusion Detection using Deep Learningen_US
dc.title.alternativeA Feature Learning Approach /en_US
dc.typeBooken_US
dc.publisher.placeSingapore :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9789811314438.pdf2.11 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Kwangjo. ;en_US
dc.contributor.authorAminanto, Muhamad Erza. ;en_US
dc.contributor.authorTanuwidjaja, Harry Chandra. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:22:33Z-
dc.date.available2020-05-17T08:22:33Z-
dc.date.issued2018en_US
dc.identifier.isbn9789811314445 ;en_US
dc.identifier.isbn9789811314438 (print) ;en_US
dc.identifier.isbn9789811314452 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/835-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314438. ;en_US
dc.descriptionQA76.9.A25 ;en_US
dc.description005.8 ; 23 ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314452. ;en_US
dc.descriptionen_US
dc.description.abstractThis book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity. ;en_US
dc.description.statementofresponsibilityby Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja.en_US
dc.description.tableofcontentsChapter 1 Introduction -- Chapter 2 Intrusion Detection Systems -- Chapter 3 Classical Machine Learning and Its Applications to IDS -- Chapter 4 Deep Learning -- Chapter 5 Deep Learning-based IDSs -- Chapter 6 Deep Feature Learning -- Chapter 7 Summary and Further Challenges. ;en_US
dc.format.extentXVII, 79 p. 30 illus., 11 illus. in color. ; online resource. ;en_US
dc.publisherSpringer Singapore :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesSpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ;en_US
dc.relation.ispartofseriesSpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ;en_US
dc.relation.haspart9789811314438.pdfen_US
dc.subjectData protection. ;en_US
dc.subjectArtificial Intelligenceen_US
dc.subjectWireless communication systems. ;en_US
dc.subjectMobile communication systems. ;en_US
dc.subjectBig data. ;en_US
dc.subjectData Miningen_US
dc.subjectSecurity. ; http://scigraph.springernature.com/things/product-market-codes/I28000. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectSystems and Data Security. ; http://scigraph.springernature.com/things/product-market-codes/I14050. ;en_US
dc.subjectWireless and Mobile Communication. ; http://scigraph.springernature.com/things/product-market-codes/T24100. ;en_US
dc.subjectBig Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;en_US
dc.subjectData Mining and Knowledge Discovery. ; http://scigraph.springernature.com/things/product-market-codes/I18030. ;en_US
dc.titleNetwork Intrusion Detection using Deep Learningen_US
dc.title.alternativeA Feature Learning Approach /en_US
dc.typeBooken_US
dc.publisher.placeSingapore :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9789811314438.pdf2.11 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Kwangjo. ;en_US
dc.contributor.authorAminanto, Muhamad Erza. ;en_US
dc.contributor.authorTanuwidjaja, Harry Chandra. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:22:33Z-
dc.date.available2020-05-17T08:22:33Z-
dc.date.issued2018en_US
dc.identifier.isbn9789811314445 ;en_US
dc.identifier.isbn9789811314438 (print) ;en_US
dc.identifier.isbn9789811314452 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/835-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314438. ;en_US
dc.descriptionQA76.9.A25 ;en_US
dc.description005.8 ; 23 ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314452. ;en_US
dc.descriptionen_US
dc.description.abstractThis book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity. ;en_US
dc.description.statementofresponsibilityby Kwangjo Kim, Muhamad Erza Aminanto, Harry Chandra Tanuwidjaja.en_US
dc.description.tableofcontentsChapter 1 Introduction -- Chapter 2 Intrusion Detection Systems -- Chapter 3 Classical Machine Learning and Its Applications to IDS -- Chapter 4 Deep Learning -- Chapter 5 Deep Learning-based IDSs -- Chapter 6 Deep Feature Learning -- Chapter 7 Summary and Further Challenges. ;en_US
dc.format.extentXVII, 79 p. 30 illus., 11 illus. in color. ; online resource. ;en_US
dc.publisherSpringer Singapore :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesSpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ;en_US
dc.relation.ispartofseriesSpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ;en_US
dc.relation.haspart9789811314438.pdfen_US
dc.subjectData protection. ;en_US
dc.subjectArtificial Intelligenceen_US
dc.subjectWireless communication systems. ;en_US
dc.subjectMobile communication systems. ;en_US
dc.subjectBig data. ;en_US
dc.subjectData Miningen_US
dc.subjectSecurity. ; http://scigraph.springernature.com/things/product-market-codes/I28000. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectSystems and Data Security. ; http://scigraph.springernature.com/things/product-market-codes/I14050. ;en_US
dc.subjectWireless and Mobile Communication. ; http://scigraph.springernature.com/things/product-market-codes/T24100. ;en_US
dc.subjectBig Data. ; http://scigraph.springernature.com/things/product-market-codes/I29120. ;en_US
dc.subjectData Mining and Knowledge Discovery. ; http://scigraph.springernature.com/things/product-market-codes/I18030. ;en_US
dc.titleNetwork Intrusion Detection using Deep Learningen_US
dc.title.alternativeA Feature Learning Approach /en_US
dc.typeBooken_US
dc.publisher.placeSingapore :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9789811314438.pdf2.11 MBAdobe PDFThumbnail
Preview File