جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید.
http://localhost/handle/Hannan/824
عنوان: | Big Digital Forensic Data |
عنوان دیگر: | Volume 1: Data Reduction Framework and Selective Imaging / |
پدیدآورنده: | Quick, Darren. ;;Choo, Kim-Kwang Raymond. ; |
کلید واژه ها: | Computer Science;Forensic science. ;;Computer Security;Application Software;Computers;Law and legislation. ;;Computer Science;Systems and Data Security;Information Systems Applications;Forensic Science. ;;Legal Aspects of Computing. ;;Computer Appl. in Social and Behavioral Sciences. ; |
تاریخ انتشار: | 2018 |
محل نشر: | Singapore : |
ناشر: | Springer Singapore : Imprint: Springer, |
فروست / شماره : | SpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ; SpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ; |
چکیده: | This book provides an in-depth understanding of big data challenges to digital forensic investigations, also known as big digital forensic data. It also develops the basis of using data mining in big forensic data analysis, including data reduction, knowledge management, intelligence, and data mining principles to achieve faster analysis in digital forensic investigations. By collecting and assembling a corpus of test data from a range of devices in the real world, it outlines a process of big data reduction, and evidence and intelligence extraction methods. Further, it includes the experimental results on vast volumes of real digital forensic data. The book is a valuable resource for digital forensic practitioners, researchers in big data, cyber threat hunting and intelligence, data mining and other related areas. ; |
توضیحات : | QA76.9.A25 ; 005.8 ; 23 ; SpringerLink (Online service) ; Printed edition: ; 9789811077623. ; |
آدرس: | http://localhost/handle/Hannan/824 |
شابک : | 9789811077630 ; 9789811077623 (print) ; |
اطلاعات بیشتر: | XV, 96 p. 6 illus., 5 illus. in color. ; online resource. ; |
مجموعه(های): | مدیریت فناوری اطلاعات |
پیوست های این کاربرگه
فایل | توضیحات | اندازه | فرمت | |
---|---|---|---|---|
9789811077623.pdf | 3.77 MB | Adobe PDF | مشاهده فایل |
عنوان: | Big Digital Forensic Data |
عنوان دیگر: | Volume 1: Data Reduction Framework and Selective Imaging / |
پدیدآورنده: | Quick, Darren. ;;Choo, Kim-Kwang Raymond. ; |
کلید واژه ها: | Computer Science;Forensic science. ;;Computer Security;Application Software;Computers;Law and legislation. ;;Computer Science;Systems and Data Security;Information Systems Applications;Forensic Science. ;;Legal Aspects of Computing. ;;Computer Appl. in Social and Behavioral Sciences. ; |
تاریخ انتشار: | 2018 |
محل نشر: | Singapore : |
ناشر: | Springer Singapore : Imprint: Springer, |
فروست / شماره : | SpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ; SpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ; |
چکیده: | This book provides an in-depth understanding of big data challenges to digital forensic investigations, also known as big digital forensic data. It also develops the basis of using data mining in big forensic data analysis, including data reduction, knowledge management, intelligence, and data mining principles to achieve faster analysis in digital forensic investigations. By collecting and assembling a corpus of test data from a range of devices in the real world, it outlines a process of big data reduction, and evidence and intelligence extraction methods. Further, it includes the experimental results on vast volumes of real digital forensic data. The book is a valuable resource for digital forensic practitioners, researchers in big data, cyber threat hunting and intelligence, data mining and other related areas. ; |
توضیحات : | QA76.9.A25 ; 005.8 ; 23 ; SpringerLink (Online service) ; Printed edition: ; 9789811077623. ; |
آدرس: | http://localhost/handle/Hannan/824 |
شابک : | 9789811077630 ; 9789811077623 (print) ; |
اطلاعات بیشتر: | XV, 96 p. 6 illus., 5 illus. in color. ; online resource. ; |
مجموعه(های): | مدیریت فناوری اطلاعات |
پیوست های این کاربرگه
فایل | توضیحات | اندازه | فرمت | |
---|---|---|---|---|
9789811077623.pdf | 3.77 MB | Adobe PDF | مشاهده فایل |
عنوان: | Big Digital Forensic Data |
عنوان دیگر: | Volume 1: Data Reduction Framework and Selective Imaging / |
پدیدآورنده: | Quick, Darren. ;;Choo, Kim-Kwang Raymond. ; |
کلید واژه ها: | Computer Science;Forensic science. ;;Computer Security;Application Software;Computers;Law and legislation. ;;Computer Science;Systems and Data Security;Information Systems Applications;Forensic Science. ;;Legal Aspects of Computing. ;;Computer Appl. in Social and Behavioral Sciences. ; |
تاریخ انتشار: | 2018 |
محل نشر: | Singapore : |
ناشر: | Springer Singapore : Imprint: Springer, |
فروست / شماره : | SpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ; SpringerBriefs on Cyber Security Systems and Networks, ; 2522-5561. ; |
چکیده: | This book provides an in-depth understanding of big data challenges to digital forensic investigations, also known as big digital forensic data. It also develops the basis of using data mining in big forensic data analysis, including data reduction, knowledge management, intelligence, and data mining principles to achieve faster analysis in digital forensic investigations. By collecting and assembling a corpus of test data from a range of devices in the real world, it outlines a process of big data reduction, and evidence and intelligence extraction methods. Further, it includes the experimental results on vast volumes of real digital forensic data. The book is a valuable resource for digital forensic practitioners, researchers in big data, cyber threat hunting and intelligence, data mining and other related areas. ; |
توضیحات : | QA76.9.A25 ; 005.8 ; 23 ; SpringerLink (Online service) ; Printed edition: ; 9789811077623. ; |
آدرس: | http://localhost/handle/Hannan/824 |
شابک : | 9789811077630 ; 9789811077623 (print) ; |
اطلاعات بیشتر: | XV, 96 p. 6 illus., 5 illus. in color. ; online resource. ; |
مجموعه(های): | مدیریت فناوری اطلاعات |
پیوست های این کاربرگه
فایل | توضیحات | اندازه | فرمت | |
---|---|---|---|---|
9789811077623.pdf | 3.77 MB | Adobe PDF | مشاهده فایل |