Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/4779
Full metadata record
DC FieldValueLanguage
dc.contributorفاطمه نبي زاده-
dc.contributorسعید روحانی-
dc.date.accessioned2023-05-05T08:36:37Z-
dc.date.available2023-05-05T08:36:37Z-
dc.date.issued1399en_US
dc.identifier.otherمجله چشم انداز مدیریت صنعتی، دوره: 10، شماره: 4-
dc.identifier.urihttp://localhost/handle/Hannan/4779-
dc.description.abstractیکی از مباحث مهم در زمینه حفظ مشتریان و چگونگی رفتار با آنها، ارزش طول عمر مشتری (CLV) است . هدف از این پژوهش، طراحی مدلی برای خوشه بندی و پیش بینی طول عمر مشتریان و همچنین ارزیابی مشتریان در مرکز شماره گذاری کالا و خدمات ایران است. در این پژوهش اطلاعات ۷۴۳۸۵ عضو این سازمان در بازه زمانی ۱۳۹۰ - ۱۳۹۶ دریافت شد. مشتریان توسط تکنیک داده کاوی CRISP طبقه بندی شده و درنهایت مدلی برای پیش بینی آن ها طراحی شد. ابتدا اعضا توسط مدل RFM و الگوریتم K-Means به ۷ طبقه دسته بندی شده و سپس هر طبقه توسط روش محاسبه ارزش طول عمر مشتریان رتبه بندی شد. در ادامه توسط الگوریتم های رگرسیون لجستیک، درخت تصمیم و شبکه های عصبی، الگوهای پنهان بین داده ها و بخش های مختلف مشتریان کشف شدند. نتایج این پژوهش، رفتار مشتریان هر یک از خوشه ها را در خدمات مرکز و همچنین مدل رفتار مشتریان آتی را نشان داده است. این پژوهش با تحلیل خوشه ها به مدیران در ارائه راهبردهای بازاریابی، حفظ اعضای وفادار و جذب یا حذف اعضای غیرفعال، یاری می رساند. در پژوهش حاضر تعداد خوشه مناسب برای مشتریان ۷ عدد است؛ همچنین در پیش بینی کلاس مشتریان عملکرد شبکه های عصبی با دقت ۵۶ / ۹۹ درصد نسبت دیگر الگوریتم ها بهتر بوده است.en_US
dc.language.isofaen_US
dc.subjectارزش طول عمر مشتری ، داده کاوی ، RFM ، خوشه بندی ، پیش بینیen_US
dc.titleمدل خوشه بندی و پیش بینی ارزش طول عمر مشتری (مورد مطالعه: مشتریان مرکز شماره گذاری کالا و خدمات ایران)-
dc.typeArticleen_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File SizeFormat 
123.pdf560.82 kBAdobe PDF
Full metadata record
DC FieldValueLanguage
dc.contributorفاطمه نبي زاده-
dc.contributorسعید روحانی-
dc.date.accessioned2023-05-05T08:36:37Z-
dc.date.available2023-05-05T08:36:37Z-
dc.date.issued1399en_US
dc.identifier.otherمجله چشم انداز مدیریت صنعتی، دوره: 10، شماره: 4-
dc.identifier.urihttp://localhost/handle/Hannan/4779-
dc.description.abstractیکی از مباحث مهم در زمینه حفظ مشتریان و چگونگی رفتار با آنها، ارزش طول عمر مشتری (CLV) است . هدف از این پژوهش، طراحی مدلی برای خوشه بندی و پیش بینی طول عمر مشتریان و همچنین ارزیابی مشتریان در مرکز شماره گذاری کالا و خدمات ایران است. در این پژوهش اطلاعات ۷۴۳۸۵ عضو این سازمان در بازه زمانی ۱۳۹۰ - ۱۳۹۶ دریافت شد. مشتریان توسط تکنیک داده کاوی CRISP طبقه بندی شده و درنهایت مدلی برای پیش بینی آن ها طراحی شد. ابتدا اعضا توسط مدل RFM و الگوریتم K-Means به ۷ طبقه دسته بندی شده و سپس هر طبقه توسط روش محاسبه ارزش طول عمر مشتریان رتبه بندی شد. در ادامه توسط الگوریتم های رگرسیون لجستیک، درخت تصمیم و شبکه های عصبی، الگوهای پنهان بین داده ها و بخش های مختلف مشتریان کشف شدند. نتایج این پژوهش، رفتار مشتریان هر یک از خوشه ها را در خدمات مرکز و همچنین مدل رفتار مشتریان آتی را نشان داده است. این پژوهش با تحلیل خوشه ها به مدیران در ارائه راهبردهای بازاریابی، حفظ اعضای وفادار و جذب یا حذف اعضای غیرفعال، یاری می رساند. در پژوهش حاضر تعداد خوشه مناسب برای مشتریان ۷ عدد است؛ همچنین در پیش بینی کلاس مشتریان عملکرد شبکه های عصبی با دقت ۵۶ / ۹۹ درصد نسبت دیگر الگوریتم ها بهتر بوده است.en_US
dc.language.isofaen_US
dc.subjectارزش طول عمر مشتری ، داده کاوی ، RFM ، خوشه بندی ، پیش بینیen_US
dc.titleمدل خوشه بندی و پیش بینی ارزش طول عمر مشتری (مورد مطالعه: مشتریان مرکز شماره گذاری کالا و خدمات ایران)-
dc.typeArticleen_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File SizeFormat 
123.pdf560.82 kBAdobe PDF
Full metadata record
DC FieldValueLanguage
dc.contributorفاطمه نبي زاده-
dc.contributorسعید روحانی-
dc.date.accessioned2023-05-05T08:36:37Z-
dc.date.available2023-05-05T08:36:37Z-
dc.date.issued1399en_US
dc.identifier.otherمجله چشم انداز مدیریت صنعتی، دوره: 10، شماره: 4-
dc.identifier.urihttp://localhost/handle/Hannan/4779-
dc.description.abstractیکی از مباحث مهم در زمینه حفظ مشتریان و چگونگی رفتار با آنها، ارزش طول عمر مشتری (CLV) است . هدف از این پژوهش، طراحی مدلی برای خوشه بندی و پیش بینی طول عمر مشتریان و همچنین ارزیابی مشتریان در مرکز شماره گذاری کالا و خدمات ایران است. در این پژوهش اطلاعات ۷۴۳۸۵ عضو این سازمان در بازه زمانی ۱۳۹۰ - ۱۳۹۶ دریافت شد. مشتریان توسط تکنیک داده کاوی CRISP طبقه بندی شده و درنهایت مدلی برای پیش بینی آن ها طراحی شد. ابتدا اعضا توسط مدل RFM و الگوریتم K-Means به ۷ طبقه دسته بندی شده و سپس هر طبقه توسط روش محاسبه ارزش طول عمر مشتریان رتبه بندی شد. در ادامه توسط الگوریتم های رگرسیون لجستیک، درخت تصمیم و شبکه های عصبی، الگوهای پنهان بین داده ها و بخش های مختلف مشتریان کشف شدند. نتایج این پژوهش، رفتار مشتریان هر یک از خوشه ها را در خدمات مرکز و همچنین مدل رفتار مشتریان آتی را نشان داده است. این پژوهش با تحلیل خوشه ها به مدیران در ارائه راهبردهای بازاریابی، حفظ اعضای وفادار و جذب یا حذف اعضای غیرفعال، یاری می رساند. در پژوهش حاضر تعداد خوشه مناسب برای مشتریان ۷ عدد است؛ همچنین در پیش بینی کلاس مشتریان عملکرد شبکه های عصبی با دقت ۵۶ / ۹۹ درصد نسبت دیگر الگوریتم ها بهتر بوده است.en_US
dc.language.isofaen_US
dc.subjectارزش طول عمر مشتری ، داده کاوی ، RFM ، خوشه بندی ، پیش بینیen_US
dc.titleمدل خوشه بندی و پیش بینی ارزش طول عمر مشتری (مورد مطالعه: مشتریان مرکز شماره گذاری کالا و خدمات ایران)-
dc.typeArticleen_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File SizeFormat 
123.pdf560.82 kBAdobe PDF