Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/476
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoyal, Palash. ;en_US
dc.contributor.authorPandey, Sumit. ;en_US
dc.contributor.authorJain, Karan. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:17:21Z-
dc.date.available2020-05-17T08:17:21Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484236857 ;en_US
dc.identifier.isbn9781484236840 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/476-
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484236840. ;en_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractDiscover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. Youeell start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. You will: Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification. ;en_US
dc.description.statementofresponsibilityby Palash Goyal, Sumit Pandey, Karan Jain.en_US
dc.description.tableofcontentsChapter 1: Introduction to NLP and Deep Learning -- Chapter 2: Word Vector representations -- Chapter 3: Unfolding Recurrent Neural Networks -- Chapter 4: Developing a Chatbot -- Chapter 5: Research Paper Implementation: Sentiment Classification. ;en_US
dc.format.extentXVII, 277 p. 99 illus., 2 illus. in color. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484236840.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectComputersen_US
dc.subjectComputer Scienceen_US
dc.subjectComputing Methodologies. ;en_US
dc.subjectPython. ;en_US
dc.subjectOpen Source. ;en_US
dc.subject.ddc006 ; 23 ;en_US
dc.titleDeep Learning for Natural Language Processingen_US
dc.title.alternativeCreating Neural Networks with Python /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484236840.pdf7.46 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoyal, Palash. ;en_US
dc.contributor.authorPandey, Sumit. ;en_US
dc.contributor.authorJain, Karan. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:17:21Z-
dc.date.available2020-05-17T08:17:21Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484236857 ;en_US
dc.identifier.isbn9781484236840 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/476-
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484236840. ;en_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractDiscover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. Youeell start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. You will: Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification. ;en_US
dc.description.statementofresponsibilityby Palash Goyal, Sumit Pandey, Karan Jain.en_US
dc.description.tableofcontentsChapter 1: Introduction to NLP and Deep Learning -- Chapter 2: Word Vector representations -- Chapter 3: Unfolding Recurrent Neural Networks -- Chapter 4: Developing a Chatbot -- Chapter 5: Research Paper Implementation: Sentiment Classification. ;en_US
dc.format.extentXVII, 277 p. 99 illus., 2 illus. in color. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484236840.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectComputersen_US
dc.subjectComputer Scienceen_US
dc.subjectComputing Methodologies. ;en_US
dc.subjectPython. ;en_US
dc.subjectOpen Source. ;en_US
dc.subject.ddc006 ; 23 ;en_US
dc.titleDeep Learning for Natural Language Processingen_US
dc.title.alternativeCreating Neural Networks with Python /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484236840.pdf7.46 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoyal, Palash. ;en_US
dc.contributor.authorPandey, Sumit. ;en_US
dc.contributor.authorJain, Karan. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:17:21Z-
dc.date.available2020-05-17T08:17:21Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484236857 ;en_US
dc.identifier.isbn9781484236840 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/476-
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484236840. ;en_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractDiscover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. Youeell start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. You will: Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification. ;en_US
dc.description.statementofresponsibilityby Palash Goyal, Sumit Pandey, Karan Jain.en_US
dc.description.tableofcontentsChapter 1: Introduction to NLP and Deep Learning -- Chapter 2: Word Vector representations -- Chapter 3: Unfolding Recurrent Neural Networks -- Chapter 4: Developing a Chatbot -- Chapter 5: Research Paper Implementation: Sentiment Classification. ;en_US
dc.format.extentXVII, 277 p. 99 illus., 2 illus. in color. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484236840.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectComputersen_US
dc.subjectComputer Scienceen_US
dc.subjectComputing Methodologies. ;en_US
dc.subjectPython. ;en_US
dc.subjectOpen Source. ;en_US
dc.subject.ddc006 ; 23 ;en_US
dc.titleDeep Learning for Natural Language Processingen_US
dc.title.alternativeCreating Neural Networks with Python /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484236840.pdf7.46 MBAdobe PDFThumbnail
Preview File