Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/475
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMasters, Timothy. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:17:21Z-
dc.date.available2020-05-17T08:17:21Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484236468 ;en_US
dc.identifier.isbn9781484236451 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/475-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9781484236451. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractDiscover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. Youeell take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, youeell learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. You will: e Code for deep learning, neural networks, and AI using C++ and CUDA C e Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more e Use the Fourier Transform for image preprocessing e Implement autoencoding via activation in the complex domain e Work with algorithms for CUDA gradient computation e Use the DEEP operating manual. ;en_US
dc.description.statementofresponsibilityby Timothy Masters.en_US
dc.description.tableofcontents0. Introduction -- 1. Embedded Class Labels -- 2. Signal Preprocessing -- 3. Image Preprocessing -- 4. Autoencoding -- 5. Deep Operating Manual. ;en_US
dc.format.extentXI, 258 p. 47 illus. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484236451.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectBig data. ;en_US
dc.subjectProgramming Languages and Electronic Computersen_US
dc.subjectComputersen_US
dc.subjectComputer Scienceen_US
dc.subjectComputing Methodologies. ;en_US
dc.subjectProgramming Languages and Compilers and Interpretersen_US
dc.subjectBig Data. ;en_US
dc.subjectBig Data/Analytics. ;en_US
dc.subject.ddc006 ; 23 ;en_US
dc.titleDeep Belief Nets in C++ and CUDA C: Volume 2en_US
dc.title.alternativeAutoencoding in the Complex Domain /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484236451.pdf5.64 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMasters, Timothy. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:17:21Z-
dc.date.available2020-05-17T08:17:21Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484236468 ;en_US
dc.identifier.isbn9781484236451 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/475-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9781484236451. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractDiscover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. Youeell take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, youeell learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. You will: e Code for deep learning, neural networks, and AI using C++ and CUDA C e Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more e Use the Fourier Transform for image preprocessing e Implement autoencoding via activation in the complex domain e Work with algorithms for CUDA gradient computation e Use the DEEP operating manual. ;en_US
dc.description.statementofresponsibilityby Timothy Masters.en_US
dc.description.tableofcontents0. Introduction -- 1. Embedded Class Labels -- 2. Signal Preprocessing -- 3. Image Preprocessing -- 4. Autoencoding -- 5. Deep Operating Manual. ;en_US
dc.format.extentXI, 258 p. 47 illus. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484236451.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectBig data. ;en_US
dc.subjectProgramming Languages and Electronic Computersen_US
dc.subjectComputersen_US
dc.subjectComputer Scienceen_US
dc.subjectComputing Methodologies. ;en_US
dc.subjectProgramming Languages and Compilers and Interpretersen_US
dc.subjectBig Data. ;en_US
dc.subjectBig Data/Analytics. ;en_US
dc.subject.ddc006 ; 23 ;en_US
dc.titleDeep Belief Nets in C++ and CUDA C: Volume 2en_US
dc.title.alternativeAutoencoding in the Complex Domain /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484236451.pdf5.64 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMasters, Timothy. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:17:21Z-
dc.date.available2020-05-17T08:17:21Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484236468 ;en_US
dc.identifier.isbn9781484236451 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/475-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionQA75.5-76.95 ;en_US
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9781484236451. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractDiscover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. Youeell take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, youeell learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. You will: e Code for deep learning, neural networks, and AI using C++ and CUDA C e Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more e Use the Fourier Transform for image preprocessing e Implement autoencoding via activation in the complex domain e Work with algorithms for CUDA gradient computation e Use the DEEP operating manual. ;en_US
dc.description.statementofresponsibilityby Timothy Masters.en_US
dc.description.tableofcontents0. Introduction -- 1. Embedded Class Labels -- 2. Signal Preprocessing -- 3. Image Preprocessing -- 4. Autoencoding -- 5. Deep Operating Manual. ;en_US
dc.format.extentXI, 258 p. 47 illus. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484236451.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectBig data. ;en_US
dc.subjectProgramming Languages and Electronic Computersen_US
dc.subjectComputersen_US
dc.subjectComputer Scienceen_US
dc.subjectComputing Methodologies. ;en_US
dc.subjectProgramming Languages and Compilers and Interpretersen_US
dc.subjectBig Data. ;en_US
dc.subjectBig Data/Analytics. ;en_US
dc.subject.ddc006 ; 23 ;en_US
dc.titleDeep Belief Nets in C++ and CUDA C: Volume 2en_US
dc.title.alternativeAutoencoding in the Complex Domain /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484236451.pdf5.64 MBAdobe PDFThumbnail
Preview File