Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/415
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Phil, ; author ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-04-28T08:53:59Z-
dc.date.available2020-04-28T08:53:59Z-
dc.date.issued2017en_US
dc.identifier.isbn9781484228456 ;en_US
dc.identifier.isbn1484228456 ;en_US
dc.identifier.isbn1484228448 ;en_US
dc.identifier.isbn9781484228449 ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/415-
dc.descriptionen_US
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484228449 ;en_US
dc.descriptionen_US
dc.description.abstractGet started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You'll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage ;en_US
dc.description.statementofresponsibilityPhil Kimen_US
dc.description.tableofcontentsAt a Glance; Contents; About the Author; About the Technical Reviewer; Acknowledgments; Introduction; Chapter 1: Machine Learning; What Is Machine Learninge; Challenges with Machine Learning; Overfitting; Confronting Overfitting; Types of Machine Learning; Classification and Regression; Summary; Chapter 2: Neural Network; Nodes of a Neural Network; Layers of Neural Network; Supervised Learning of a Neural Network; Training of a Single-Layer Neural Network: Delta Rule; Generalized Delta Rule; SGD, Batch, and Mini Batch; Stochastic Gradient Descent; Batch; Mini Batch ;en_US
dc.description.tableofcontentsExample: Delta RuleImplementation of the SGD Method; Implementation of the Batch Method; Comparison of the SGD and the Batch; Limitations of Single-Layer Neural Networks; Summary; Chapter 3: Training of Multi-Layer Neural Network; Back-Propagation Algorithm; Example: Back-Propagation; XOR Problem; Momentum; Cost Function and Learning Rule; Example: Cross Entropy Function; Cross Entropy Function; Comparison of Cost Functions; Summary; Chapter 4: Neural Network and Classification; Binary Classification; Multiclass Classification; Example: Multiclass Classification; Summary ;en_US
dc.description.tableofcontentsChapter 5: Deep LearningImprovement of the Deep Neural Network; Vanishing Gradient; Overfitting; Computational Load; Example: ReLU and Dropout; ReLU Function; Dropout; Summary; Chapter 6: Convolutional Neural Network; Architecture of ConvNet; Convolution Layer; Pooling Layer; Example: MNIST; Summary; Index ;en_US
dc.format.extent1 online resource ;en_US
dc.format.extentIncludes index ;en_US
dc.format.extentIncludes bibliographical references ;en_US
dc.publisherApress,en_US
dc.relation.haspart9781484228456.pdfen_US
dc.subjectMATLAB ;en_US
dc.subjectMachine learning ;en_US
dc.subjectNeural networks (Computer science) ;en_US
dc.subjectMatlab (Computer Program) ;en_US
dc.subjectComputers ; Mathematical & Statistical Software ;en_US
dc.titleMATLAB deep learning :en_US
dc.title.alternativewith machine learning, neural networks and artificial intelligence /en_US
dc.typeBooken_US
dc.publisher.place[New York, NY] :en_US
dc.classification.lcTA345.5.M42 ;en_US
dc.classification.dc511/.8 ; 23 ;en_US
Appears in Collections:مهندسی مدیریت ساخت

Files in This Item:
File Description SizeFormat 
9781484228456.pdf3.73 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Phil, ; author ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-04-28T08:53:59Z-
dc.date.available2020-04-28T08:53:59Z-
dc.date.issued2017en_US
dc.identifier.isbn9781484228456 ;en_US
dc.identifier.isbn1484228456 ;en_US
dc.identifier.isbn1484228448 ;en_US
dc.identifier.isbn9781484228449 ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/415-
dc.descriptionen_US
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484228449 ;en_US
dc.descriptionen_US
dc.description.abstractGet started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You'll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage ;en_US
dc.description.statementofresponsibilityPhil Kimen_US
dc.description.tableofcontentsAt a Glance; Contents; About the Author; About the Technical Reviewer; Acknowledgments; Introduction; Chapter 1: Machine Learning; What Is Machine Learninge; Challenges with Machine Learning; Overfitting; Confronting Overfitting; Types of Machine Learning; Classification and Regression; Summary; Chapter 2: Neural Network; Nodes of a Neural Network; Layers of Neural Network; Supervised Learning of a Neural Network; Training of a Single-Layer Neural Network: Delta Rule; Generalized Delta Rule; SGD, Batch, and Mini Batch; Stochastic Gradient Descent; Batch; Mini Batch ;en_US
dc.description.tableofcontentsExample: Delta RuleImplementation of the SGD Method; Implementation of the Batch Method; Comparison of the SGD and the Batch; Limitations of Single-Layer Neural Networks; Summary; Chapter 3: Training of Multi-Layer Neural Network; Back-Propagation Algorithm; Example: Back-Propagation; XOR Problem; Momentum; Cost Function and Learning Rule; Example: Cross Entropy Function; Cross Entropy Function; Comparison of Cost Functions; Summary; Chapter 4: Neural Network and Classification; Binary Classification; Multiclass Classification; Example: Multiclass Classification; Summary ;en_US
dc.description.tableofcontentsChapter 5: Deep LearningImprovement of the Deep Neural Network; Vanishing Gradient; Overfitting; Computational Load; Example: ReLU and Dropout; ReLU Function; Dropout; Summary; Chapter 6: Convolutional Neural Network; Architecture of ConvNet; Convolution Layer; Pooling Layer; Example: MNIST; Summary; Index ;en_US
dc.format.extent1 online resource ;en_US
dc.format.extentIncludes index ;en_US
dc.format.extentIncludes bibliographical references ;en_US
dc.publisherApress,en_US
dc.relation.haspart9781484228456.pdfen_US
dc.subjectMATLAB ;en_US
dc.subjectMachine learning ;en_US
dc.subjectNeural networks (Computer science) ;en_US
dc.subjectMatlab (Computer Program) ;en_US
dc.subjectComputers ; Mathematical & Statistical Software ;en_US
dc.titleMATLAB deep learning :en_US
dc.title.alternativewith machine learning, neural networks and artificial intelligence /en_US
dc.typeBooken_US
dc.publisher.place[New York, NY] :en_US
dc.classification.lcTA345.5.M42 ;en_US
dc.classification.dc511/.8 ; 23 ;en_US
Appears in Collections:مهندسی مدیریت ساخت

Files in This Item:
File Description SizeFormat 
9781484228456.pdf3.73 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Phil, ; author ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-04-28T08:53:59Z-
dc.date.available2020-04-28T08:53:59Z-
dc.date.issued2017en_US
dc.identifier.isbn9781484228456 ;en_US
dc.identifier.isbn1484228456 ;en_US
dc.identifier.isbn1484228448 ;en_US
dc.identifier.isbn9781484228449 ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/415-
dc.descriptionen_US
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9781484228449 ;en_US
dc.descriptionen_US
dc.description.abstractGet started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You'll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage ;en_US
dc.description.statementofresponsibilityPhil Kimen_US
dc.description.tableofcontentsAt a Glance; Contents; About the Author; About the Technical Reviewer; Acknowledgments; Introduction; Chapter 1: Machine Learning; What Is Machine Learninge; Challenges with Machine Learning; Overfitting; Confronting Overfitting; Types of Machine Learning; Classification and Regression; Summary; Chapter 2: Neural Network; Nodes of a Neural Network; Layers of Neural Network; Supervised Learning of a Neural Network; Training of a Single-Layer Neural Network: Delta Rule; Generalized Delta Rule; SGD, Batch, and Mini Batch; Stochastic Gradient Descent; Batch; Mini Batch ;en_US
dc.description.tableofcontentsExample: Delta RuleImplementation of the SGD Method; Implementation of the Batch Method; Comparison of the SGD and the Batch; Limitations of Single-Layer Neural Networks; Summary; Chapter 3: Training of Multi-Layer Neural Network; Back-Propagation Algorithm; Example: Back-Propagation; XOR Problem; Momentum; Cost Function and Learning Rule; Example: Cross Entropy Function; Cross Entropy Function; Comparison of Cost Functions; Summary; Chapter 4: Neural Network and Classification; Binary Classification; Multiclass Classification; Example: Multiclass Classification; Summary ;en_US
dc.description.tableofcontentsChapter 5: Deep LearningImprovement of the Deep Neural Network; Vanishing Gradient; Overfitting; Computational Load; Example: ReLU and Dropout; ReLU Function; Dropout; Summary; Chapter 6: Convolutional Neural Network; Architecture of ConvNet; Convolution Layer; Pooling Layer; Example: MNIST; Summary; Index ;en_US
dc.format.extent1 online resource ;en_US
dc.format.extentIncludes index ;en_US
dc.format.extentIncludes bibliographical references ;en_US
dc.publisherApress,en_US
dc.relation.haspart9781484228456.pdfen_US
dc.subjectMATLAB ;en_US
dc.subjectMachine learning ;en_US
dc.subjectNeural networks (Computer science) ;en_US
dc.subjectMatlab (Computer Program) ;en_US
dc.subjectComputers ; Mathematical & Statistical Software ;en_US
dc.titleMATLAB deep learning :en_US
dc.title.alternativewith machine learning, neural networks and artificial intelligence /en_US
dc.typeBooken_US
dc.publisher.place[New York, NY] :en_US
dc.classification.lcTA345.5.M42 ;en_US
dc.classification.dc511/.8 ; 23 ;en_US
Appears in Collections:مهندسی مدیریت ساخت

Files in This Item:
File Description SizeFormat 
9781484228456.pdf3.73 MBAdobe PDFThumbnail
Preview File