Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/4106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDinarvand, Saeed-
dc.contributor.authorKhosravi, Soroush-
dc.contributor.authorKhoosheh, Hasan-
dc.contributor.authorNasrollahzadeh, Mohsen-
dc.date.accessioned2026-11-12T19:46:34Z-
dc.date.available2026-11-12T19:46:34Z-
dc.date.issued2011-
dc.identifier.urihttp://localhost/handle/Hannan/4106-
dc.description.abstractHere, an analytic method, namely the homotopy analysis method (shortly HAM), is applied to solve the KdV, Kawahara and Gardner equations. The HAM is a strong and easy-to-use analytic tool for nonlinear problems and dose not need small parameters in the equations. This method contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy.en_US
dc.language.isoenen_US
dc.subjectSeries solution, Non-linear PDEs, KdV equation; Kawahara equation; Gardner equationen_US
dc.titleSeries Solutions with Convergence-Control Parameter for Three Highly Non-Linear PDEs: KdV, Kawahara and Gardner equationsen_US
dc.typeArticleen_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File SizeFormat 
9-it-english.pdf11.33 MBAdobe PDF
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDinarvand, Saeed-
dc.contributor.authorKhosravi, Soroush-
dc.contributor.authorKhoosheh, Hasan-
dc.contributor.authorNasrollahzadeh, Mohsen-
dc.date.accessioned2026-11-12T19:46:34Z-
dc.date.available2026-11-12T19:46:34Z-
dc.date.issued2011-
dc.identifier.urihttp://localhost/handle/Hannan/4106-
dc.description.abstractHere, an analytic method, namely the homotopy analysis method (shortly HAM), is applied to solve the KdV, Kawahara and Gardner equations. The HAM is a strong and easy-to-use analytic tool for nonlinear problems and dose not need small parameters in the equations. This method contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy.en_US
dc.language.isoenen_US
dc.subjectSeries solution, Non-linear PDEs, KdV equation; Kawahara equation; Gardner equationen_US
dc.titleSeries Solutions with Convergence-Control Parameter for Three Highly Non-Linear PDEs: KdV, Kawahara and Gardner equationsen_US
dc.typeArticleen_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File SizeFormat 
9-it-english.pdf11.33 MBAdobe PDF
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDinarvand, Saeed-
dc.contributor.authorKhosravi, Soroush-
dc.contributor.authorKhoosheh, Hasan-
dc.contributor.authorNasrollahzadeh, Mohsen-
dc.date.accessioned2026-11-12T19:46:34Z-
dc.date.available2026-11-12T19:46:34Z-
dc.date.issued2011-
dc.identifier.urihttp://localhost/handle/Hannan/4106-
dc.description.abstractHere, an analytic method, namely the homotopy analysis method (shortly HAM), is applied to solve the KdV, Kawahara and Gardner equations. The HAM is a strong and easy-to-use analytic tool for nonlinear problems and dose not need small parameters in the equations. This method contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy.en_US
dc.language.isoenen_US
dc.subjectSeries solution, Non-linear PDEs, KdV equation; Kawahara equation; Gardner equationen_US
dc.titleSeries Solutions with Convergence-Control Parameter for Three Highly Non-Linear PDEs: KdV, Kawahara and Gardner equationsen_US
dc.typeArticleen_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File SizeFormat 
9-it-english.pdf11.33 MBAdobe PDF