Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/1767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorezyer, Tansel. ; editor. ;en_US
dc.contributor.authorAlhajj, Reda. ; editor. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:32:29Z-
dc.date.available2020-05-17T08:32:29Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319899329 ;en_US
dc.identifier.isbn9783319899312 (Print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1767-
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionHdE ; WaSeSS ;en_US
dc.descriptionen_US
dc.descriptionQA76en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionHdig ; SFX ;en_US
dc.descriptionZdig ; WaSeSS ;en_US
dc.descriptionPrinted edition: ; Machine Learning Techniques for Online Social Networks ; 9783319899312 ;en_US
dc.description.abstractThe book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields. . ;en_US
dc.description.statementofresponsibilityedited by Tansel ezyer, Reda Alhajj.en_US
dc.description.tableofcontentsChapter1. Acceleration of Functional Cluster Extraction and Analysis of Cluster Affinity -- Chapter2. Delta-Hyperbolicity and the Core-Periphery Structure in Graphs -- Chapter3. A Framework for OSN Performance Evaluation Studies -- Chapter4. On The Problem of Multi-Staged Impression Allocation in Online Social Networks -- Chapter5. Order-of-Magnitude Popularity Estimation of Pirated Content -- Chapter6. Learning What to Share in Online Social Networks using Deep Reinforcement Learning -- Chapter7. Centrality and Community Scoring Functions in Incomplete Networks: Their Sensitivity, Robustness and Reliability -- Chapter8. Ameliorating Search Results Recommendation System based on K-means Clustering Algorithm and Distance Measurements -- Chapter9. Dynamics of large scale networks following a merger -- Chapter10. Cloud Assisted Personal Online Social Network -- Chapter11. Text-Based Analysis of Emotion by Considering Tweets. ;en_US
dc.format.extentVIII, 236 p. 102 illus., 85 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesLecture Notes in Social Networks, ; 2190-5428 ;en_US
dc.relation.ispartofseriesLecture Notes in Social Networks, ; 2190-5428 ;en_US
dc.relation.haspart9783319899312.pdfen_US
dc.subjectSocial sciences. ;en_US
dc.subjectSocial media. ;en_US
dc.subjectData Miningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectSocial Sciences. ;en_US
dc.subjectComputational Social Sciences. ;en_US
dc.subjectData Mining and Knowledge Discoveryen_US
dc.subjectSocial Media. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.titleMachine Learning Techniques for Online Social Networks /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319899312.pdf10.12 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorezyer, Tansel. ; editor. ;en_US
dc.contributor.authorAlhajj, Reda. ; editor. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:32:29Z-
dc.date.available2020-05-17T08:32:29Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319899329 ;en_US
dc.identifier.isbn9783319899312 (Print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1767-
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionHdE ; WaSeSS ;en_US
dc.descriptionen_US
dc.descriptionQA76en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionHdig ; SFX ;en_US
dc.descriptionZdig ; WaSeSS ;en_US
dc.descriptionPrinted edition: ; Machine Learning Techniques for Online Social Networks ; 9783319899312 ;en_US
dc.description.abstractThe book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields. . ;en_US
dc.description.statementofresponsibilityedited by Tansel ezyer, Reda Alhajj.en_US
dc.description.tableofcontentsChapter1. Acceleration of Functional Cluster Extraction and Analysis of Cluster Affinity -- Chapter2. Delta-Hyperbolicity and the Core-Periphery Structure in Graphs -- Chapter3. A Framework for OSN Performance Evaluation Studies -- Chapter4. On The Problem of Multi-Staged Impression Allocation in Online Social Networks -- Chapter5. Order-of-Magnitude Popularity Estimation of Pirated Content -- Chapter6. Learning What to Share in Online Social Networks using Deep Reinforcement Learning -- Chapter7. Centrality and Community Scoring Functions in Incomplete Networks: Their Sensitivity, Robustness and Reliability -- Chapter8. Ameliorating Search Results Recommendation System based on K-means Clustering Algorithm and Distance Measurements -- Chapter9. Dynamics of large scale networks following a merger -- Chapter10. Cloud Assisted Personal Online Social Network -- Chapter11. Text-Based Analysis of Emotion by Considering Tweets. ;en_US
dc.format.extentVIII, 236 p. 102 illus., 85 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesLecture Notes in Social Networks, ; 2190-5428 ;en_US
dc.relation.ispartofseriesLecture Notes in Social Networks, ; 2190-5428 ;en_US
dc.relation.haspart9783319899312.pdfen_US
dc.subjectSocial sciences. ;en_US
dc.subjectSocial media. ;en_US
dc.subjectData Miningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectSocial Sciences. ;en_US
dc.subjectComputational Social Sciences. ;en_US
dc.subjectData Mining and Knowledge Discoveryen_US
dc.subjectSocial Media. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.titleMachine Learning Techniques for Online Social Networks /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319899312.pdf10.12 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorezyer, Tansel. ; editor. ;en_US
dc.contributor.authorAlhajj, Reda. ; editor. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:32:29Z-
dc.date.available2020-05-17T08:32:29Z-
dc.date.issued2018en_US
dc.identifier.isbn9783319899329 ;en_US
dc.identifier.isbn9783319899312 (Print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1767-
dc.descriptionen_US
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionHdE ; WaSeSS ;en_US
dc.descriptionen_US
dc.descriptionQA76en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionHdig ; SFX ;en_US
dc.descriptionZdig ; WaSeSS ;en_US
dc.descriptionPrinted edition: ; Machine Learning Techniques for Online Social Networks ; 9783319899312 ;en_US
dc.description.abstractThe book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields. . ;en_US
dc.description.statementofresponsibilityedited by Tansel ezyer, Reda Alhajj.en_US
dc.description.tableofcontentsChapter1. Acceleration of Functional Cluster Extraction and Analysis of Cluster Affinity -- Chapter2. Delta-Hyperbolicity and the Core-Periphery Structure in Graphs -- Chapter3. A Framework for OSN Performance Evaluation Studies -- Chapter4. On The Problem of Multi-Staged Impression Allocation in Online Social Networks -- Chapter5. Order-of-Magnitude Popularity Estimation of Pirated Content -- Chapter6. Learning What to Share in Online Social Networks using Deep Reinforcement Learning -- Chapter7. Centrality and Community Scoring Functions in Incomplete Networks: Their Sensitivity, Robustness and Reliability -- Chapter8. Ameliorating Search Results Recommendation System based on K-means Clustering Algorithm and Distance Measurements -- Chapter9. Dynamics of large scale networks following a merger -- Chapter10. Cloud Assisted Personal Online Social Network -- Chapter11. Text-Based Analysis of Emotion by Considering Tweets. ;en_US
dc.format.extentVIII, 236 p. 102 illus., 85 illus. in color. ; online resource. ;en_US
dc.publisherSpringer International Publishing :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesLecture Notes in Social Networks, ; 2190-5428 ;en_US
dc.relation.ispartofseriesLecture Notes in Social Networks, ; 2190-5428 ;en_US
dc.relation.haspart9783319899312.pdfen_US
dc.subjectSocial sciences. ;en_US
dc.subjectSocial media. ;en_US
dc.subjectData Miningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectSocial Sciences. ;en_US
dc.subjectComputational Social Sciences. ;en_US
dc.subjectData Mining and Knowledge Discoveryen_US
dc.subjectSocial Media. ;en_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.titleMachine Learning Techniques for Online Social Networks /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319899312.pdf10.12 MBAdobe PDFThumbnail
Preview File