Please use this identifier to cite or link to this item:
http://localhost/handle/Hannan/1767
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ezyer, Tansel. ; editor. ; | en_US |
dc.contributor.author | Alhajj, Reda. ; editor. ; | en_US |
dc.date.accessioned | 2013 | en_US |
dc.date.accessioned | 2020-05-17T08:32:29Z | - |
dc.date.available | 2020-05-17T08:32:29Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.isbn | 9783319899329 ; | en_US |
dc.identifier.isbn | 9783319899312 (Print) ; | en_US |
dc.identifier.uri | http://localhost/handle/Hannan/1767 | - |
dc.description | en_US | |
dc.description | SpringerLink (Online service) ; | en_US |
dc.description | en_US | |
dc.description | HdE ; WaSeSS ; | en_US |
dc.description | en_US | |
dc.description | QA76 | en_US |
dc.description | en_US | |
dc.description | en_US | |
dc.description | en_US | |
dc.description | Hdig ; SFX ; | en_US |
dc.description | Zdig ; WaSeSS ; | en_US |
dc.description | Printed edition: ; Machine Learning Techniques for Online Social Networks ; 9783319899312 ; | en_US |
dc.description.abstract | The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields. . ; | en_US |
dc.description.statementofresponsibility | edited by Tansel ezyer, Reda Alhajj. | en_US |
dc.description.tableofcontents | Chapter1. Acceleration of Functional Cluster Extraction and Analysis of Cluster Affinity -- Chapter2. Delta-Hyperbolicity and the Core-Periphery Structure in Graphs -- Chapter3. A Framework for OSN Performance Evaluation Studies -- Chapter4. On The Problem of Multi-Staged Impression Allocation in Online Social Networks -- Chapter5. Order-of-Magnitude Popularity Estimation of Pirated Content -- Chapter6. Learning What to Share in Online Social Networks using Deep Reinforcement Learning -- Chapter7. Centrality and Community Scoring Functions in Incomplete Networks: Their Sensitivity, Robustness and Reliability -- Chapter8. Ameliorating Search Results Recommendation System based on K-means Clustering Algorithm and Distance Measurements -- Chapter9. Dynamics of large scale networks following a merger -- Chapter10. Cloud Assisted Personal Online Social Network -- Chapter11. Text-Based Analysis of Emotion by Considering Tweets. ; | en_US |
dc.format.extent | VIII, 236 p. 102 illus., 85 illus. in color. ; online resource. ; | en_US |
dc.publisher | Springer International Publishing : | en_US |
dc.publisher | Imprint: Springer, | en_US |
dc.relation.ispartofseries | Lecture Notes in Social Networks, ; 2190-5428 ; | en_US |
dc.relation.ispartofseries | Lecture Notes in Social Networks, ; 2190-5428 ; | en_US |
dc.relation.haspart | 9783319899312.pdf | en_US |
dc.subject | Social sciences. ; | en_US |
dc.subject | Social media. ; | en_US |
dc.subject | Data Mining | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Social Sciences. ; | en_US |
dc.subject | Computational Social Sciences. ; | en_US |
dc.subject | Data Mining and Knowledge Discovery | en_US |
dc.subject | Social Media. ; | en_US |
dc.subject | Artificial Intelligence and Robotics | en_US |
dc.title | Machine Learning Techniques for Online Social Networks / | en_US |
dc.type | Book | en_US |
dc.publisher.place | Cham : | en_US |
Appears in Collections: | مدیریت فناوری اطلاعات |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
9783319899312.pdf | 10.12 MB | Adobe PDF | Preview File |
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ezyer, Tansel. ; editor. ; | en_US |
dc.contributor.author | Alhajj, Reda. ; editor. ; | en_US |
dc.date.accessioned | 2013 | en_US |
dc.date.accessioned | 2020-05-17T08:32:29Z | - |
dc.date.available | 2020-05-17T08:32:29Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.isbn | 9783319899329 ; | en_US |
dc.identifier.isbn | 9783319899312 (Print) ; | en_US |
dc.identifier.uri | http://localhost/handle/Hannan/1767 | - |
dc.description | en_US | |
dc.description | SpringerLink (Online service) ; | en_US |
dc.description | en_US | |
dc.description | HdE ; WaSeSS ; | en_US |
dc.description | en_US | |
dc.description | QA76 | en_US |
dc.description | en_US | |
dc.description | en_US | |
dc.description | en_US | |
dc.description | Hdig ; SFX ; | en_US |
dc.description | Zdig ; WaSeSS ; | en_US |
dc.description | Printed edition: ; Machine Learning Techniques for Online Social Networks ; 9783319899312 ; | en_US |
dc.description.abstract | The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields. . ; | en_US |
dc.description.statementofresponsibility | edited by Tansel ezyer, Reda Alhajj. | en_US |
dc.description.tableofcontents | Chapter1. Acceleration of Functional Cluster Extraction and Analysis of Cluster Affinity -- Chapter2. Delta-Hyperbolicity and the Core-Periphery Structure in Graphs -- Chapter3. A Framework for OSN Performance Evaluation Studies -- Chapter4. On The Problem of Multi-Staged Impression Allocation in Online Social Networks -- Chapter5. Order-of-Magnitude Popularity Estimation of Pirated Content -- Chapter6. Learning What to Share in Online Social Networks using Deep Reinforcement Learning -- Chapter7. Centrality and Community Scoring Functions in Incomplete Networks: Their Sensitivity, Robustness and Reliability -- Chapter8. Ameliorating Search Results Recommendation System based on K-means Clustering Algorithm and Distance Measurements -- Chapter9. Dynamics of large scale networks following a merger -- Chapter10. Cloud Assisted Personal Online Social Network -- Chapter11. Text-Based Analysis of Emotion by Considering Tweets. ; | en_US |
dc.format.extent | VIII, 236 p. 102 illus., 85 illus. in color. ; online resource. ; | en_US |
dc.publisher | Springer International Publishing : | en_US |
dc.publisher | Imprint: Springer, | en_US |
dc.relation.ispartofseries | Lecture Notes in Social Networks, ; 2190-5428 ; | en_US |
dc.relation.ispartofseries | Lecture Notes in Social Networks, ; 2190-5428 ; | en_US |
dc.relation.haspart | 9783319899312.pdf | en_US |
dc.subject | Social sciences. ; | en_US |
dc.subject | Social media. ; | en_US |
dc.subject | Data Mining | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Social Sciences. ; | en_US |
dc.subject | Computational Social Sciences. ; | en_US |
dc.subject | Data Mining and Knowledge Discovery | en_US |
dc.subject | Social Media. ; | en_US |
dc.subject | Artificial Intelligence and Robotics | en_US |
dc.title | Machine Learning Techniques for Online Social Networks / | en_US |
dc.type | Book | en_US |
dc.publisher.place | Cham : | en_US |
Appears in Collections: | مدیریت فناوری اطلاعات |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
9783319899312.pdf | 10.12 MB | Adobe PDF | Preview File |
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ezyer, Tansel. ; editor. ; | en_US |
dc.contributor.author | Alhajj, Reda. ; editor. ; | en_US |
dc.date.accessioned | 2013 | en_US |
dc.date.accessioned | 2020-05-17T08:32:29Z | - |
dc.date.available | 2020-05-17T08:32:29Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.isbn | 9783319899329 ; | en_US |
dc.identifier.isbn | 9783319899312 (Print) ; | en_US |
dc.identifier.uri | http://localhost/handle/Hannan/1767 | - |
dc.description | en_US | |
dc.description | SpringerLink (Online service) ; | en_US |
dc.description | en_US | |
dc.description | HdE ; WaSeSS ; | en_US |
dc.description | en_US | |
dc.description | QA76 | en_US |
dc.description | en_US | |
dc.description | en_US | |
dc.description | en_US | |
dc.description | Hdig ; SFX ; | en_US |
dc.description | Zdig ; WaSeSS ; | en_US |
dc.description | Printed edition: ; Machine Learning Techniques for Online Social Networks ; 9783319899312 ; | en_US |
dc.description.abstract | The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields. . ; | en_US |
dc.description.statementofresponsibility | edited by Tansel ezyer, Reda Alhajj. | en_US |
dc.description.tableofcontents | Chapter1. Acceleration of Functional Cluster Extraction and Analysis of Cluster Affinity -- Chapter2. Delta-Hyperbolicity and the Core-Periphery Structure in Graphs -- Chapter3. A Framework for OSN Performance Evaluation Studies -- Chapter4. On The Problem of Multi-Staged Impression Allocation in Online Social Networks -- Chapter5. Order-of-Magnitude Popularity Estimation of Pirated Content -- Chapter6. Learning What to Share in Online Social Networks using Deep Reinforcement Learning -- Chapter7. Centrality and Community Scoring Functions in Incomplete Networks: Their Sensitivity, Robustness and Reliability -- Chapter8. Ameliorating Search Results Recommendation System based on K-means Clustering Algorithm and Distance Measurements -- Chapter9. Dynamics of large scale networks following a merger -- Chapter10. Cloud Assisted Personal Online Social Network -- Chapter11. Text-Based Analysis of Emotion by Considering Tweets. ; | en_US |
dc.format.extent | VIII, 236 p. 102 illus., 85 illus. in color. ; online resource. ; | en_US |
dc.publisher | Springer International Publishing : | en_US |
dc.publisher | Imprint: Springer, | en_US |
dc.relation.ispartofseries | Lecture Notes in Social Networks, ; 2190-5428 ; | en_US |
dc.relation.ispartofseries | Lecture Notes in Social Networks, ; 2190-5428 ; | en_US |
dc.relation.haspart | 9783319899312.pdf | en_US |
dc.subject | Social sciences. ; | en_US |
dc.subject | Social media. ; | en_US |
dc.subject | Data Mining | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Social Sciences. ; | en_US |
dc.subject | Computational Social Sciences. ; | en_US |
dc.subject | Data Mining and Knowledge Discovery | en_US |
dc.subject | Social Media. ; | en_US |
dc.subject | Artificial Intelligence and Robotics | en_US |
dc.title | Machine Learning Techniques for Online Social Networks / | en_US |
dc.type | Book | en_US |
dc.publisher.place | Cham : | en_US |
Appears in Collections: | مدیریت فناوری اطلاعات |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
9783319899312.pdf | 10.12 MB | Adobe PDF | Preview File |