Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/1655
Full metadata record
DC FieldValueLanguage
dc.contributorBIRS Workshop "Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets" ; (2015 : ; Banff, Alta.) ;en_US
dc.contributor.authorHolzinger, Andreas, ; editor ;en_US
dc.contributor.authorGoebel, Randy, ; editor ;en_US
dc.contributor.authorFerri, Massimo, ; editor ;en_US
dc.contributor.authorPalade, Vasile, ; 1964- ; editor ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:30:48Z-
dc.date.available2020-05-17T08:30:48Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319697758 ; (electronic bk.) ;en_US
dc.identifier.isbn3319697757 ; (electronic bk.) ;en_US
dc.identifier.isbn9783319697741 ; (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1655-
dc.descriptionen_US
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThe BIRS Workshop eeAdvances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Setsee (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of eehot topicsee toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain. The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning ;en_US
dc.description.statementofresponsibilityAndreas Holzinger, Randy Goebel, Massimo Ferri, Vasile Palade (eds.)en_US
dc.description.tableofcontentsTowards integrative Machine Learning & Knowledge Extraction -- Machine Learning and Knowledge Extraction in Digital Pathology needs an integrative approach -- Comparison of Public-Domain Software and Services for Probabilistic Record Linkage and Address Standardization -- Better Interpretable Models for Proteomics Data Analysis Using rule-based Mining -- Probabilistic Logic Programming in Action -- Persistent topology for natural data analysis e A survey -- Predictive Models for Differentiation between Normal and Abnormal EEG through Cross-Correlation and Machine Learning Techniques -- A Brief Philosophical Note on Information -- Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline -- A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images -- Topological characteristics of oil and gas reservoirs and their applications -- Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment ;en_US
dc.format.extent1 online resource (xvi, 207 pages) : ; illustrations ;en_US
dc.format.extentIncludes author index ;en_US
dc.publisherSpringer,en_US
dc.relation.ispartofseriesLecture notes in computer science, ; 0302-9743 ; ; 10344 ;en_US
dc.relation.ispartofseriesLecture notes in artificial intelligence ;en_US
dc.relation.ispartofseriesLNCS sublibrary. SL 7, Artificial intelligence ;en_US
dc.relation.ispartofseriesLecture notes in computer science ; ; 10344. ; 0302-9743 ;en_US
dc.relation.ispartofseriesLecture notes in computer science. ; Lecture notes in artificial intelligence ;en_US
dc.relation.ispartofseriesLNCS sublibrary. ; SL 7, ; Artificial intelligence ;en_US
dc.relation.haspart9783319697758.pdfen_US
dc.subjectData mining ; Congresses ;en_US
dc.subjectMachine learning ;en_US
dc.subjectHuman-computer interaction ; Congresses ;en_US
dc.titleTowards integrative machine learning and knowledge extraction :en_US
dc.title.alternativeBIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised selected papers /en_US
dc.title.alternativeBIRS Workshop ;en_US
dc.typeBooken_US
dc.publisher.placeCham, Switzerland :en_US
dc.classification.lcQA76.9.D343 ;en_US
Appears in Collections:مهندسی فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319697758.pdf19.22 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributorBIRS Workshop "Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets" ; (2015 : ; Banff, Alta.) ;en_US
dc.contributor.authorHolzinger, Andreas, ; editor ;en_US
dc.contributor.authorGoebel, Randy, ; editor ;en_US
dc.contributor.authorFerri, Massimo, ; editor ;en_US
dc.contributor.authorPalade, Vasile, ; 1964- ; editor ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:30:48Z-
dc.date.available2020-05-17T08:30:48Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319697758 ; (electronic bk.) ;en_US
dc.identifier.isbn3319697757 ; (electronic bk.) ;en_US
dc.identifier.isbn9783319697741 ; (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1655-
dc.descriptionen_US
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThe BIRS Workshop eeAdvances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Setsee (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of eehot topicsee toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain. The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning ;en_US
dc.description.statementofresponsibilityAndreas Holzinger, Randy Goebel, Massimo Ferri, Vasile Palade (eds.)en_US
dc.description.tableofcontentsTowards integrative Machine Learning & Knowledge Extraction -- Machine Learning and Knowledge Extraction in Digital Pathology needs an integrative approach -- Comparison of Public-Domain Software and Services for Probabilistic Record Linkage and Address Standardization -- Better Interpretable Models for Proteomics Data Analysis Using rule-based Mining -- Probabilistic Logic Programming in Action -- Persistent topology for natural data analysis e A survey -- Predictive Models for Differentiation between Normal and Abnormal EEG through Cross-Correlation and Machine Learning Techniques -- A Brief Philosophical Note on Information -- Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline -- A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images -- Topological characteristics of oil and gas reservoirs and their applications -- Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment ;en_US
dc.format.extent1 online resource (xvi, 207 pages) : ; illustrations ;en_US
dc.format.extentIncludes author index ;en_US
dc.publisherSpringer,en_US
dc.relation.ispartofseriesLecture notes in computer science, ; 0302-9743 ; ; 10344 ;en_US
dc.relation.ispartofseriesLecture notes in artificial intelligence ;en_US
dc.relation.ispartofseriesLNCS sublibrary. SL 7, Artificial intelligence ;en_US
dc.relation.ispartofseriesLecture notes in computer science ; ; 10344. ; 0302-9743 ;en_US
dc.relation.ispartofseriesLecture notes in computer science. ; Lecture notes in artificial intelligence ;en_US
dc.relation.ispartofseriesLNCS sublibrary. ; SL 7, ; Artificial intelligence ;en_US
dc.relation.haspart9783319697758.pdfen_US
dc.subjectData mining ; Congresses ;en_US
dc.subjectMachine learning ;en_US
dc.subjectHuman-computer interaction ; Congresses ;en_US
dc.titleTowards integrative machine learning and knowledge extraction :en_US
dc.title.alternativeBIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised selected papers /en_US
dc.title.alternativeBIRS Workshop ;en_US
dc.typeBooken_US
dc.publisher.placeCham, Switzerland :en_US
dc.classification.lcQA76.9.D343 ;en_US
Appears in Collections:مهندسی فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319697758.pdf19.22 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributorBIRS Workshop "Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets" ; (2015 : ; Banff, Alta.) ;en_US
dc.contributor.authorHolzinger, Andreas, ; editor ;en_US
dc.contributor.authorGoebel, Randy, ; editor ;en_US
dc.contributor.authorFerri, Massimo, ; editor ;en_US
dc.contributor.authorPalade, Vasile, ; 1964- ; editor ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:30:48Z-
dc.date.available2020-05-17T08:30:48Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319697758 ; (electronic bk.) ;en_US
dc.identifier.isbn3319697757 ; (electronic bk.) ;en_US
dc.identifier.isbn9783319697741 ; (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1655-
dc.descriptionen_US
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThe BIRS Workshop eeAdvances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Setsee (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of eehot topicsee toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain. The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning ;en_US
dc.description.statementofresponsibilityAndreas Holzinger, Randy Goebel, Massimo Ferri, Vasile Palade (eds.)en_US
dc.description.tableofcontentsTowards integrative Machine Learning & Knowledge Extraction -- Machine Learning and Knowledge Extraction in Digital Pathology needs an integrative approach -- Comparison of Public-Domain Software and Services for Probabilistic Record Linkage and Address Standardization -- Better Interpretable Models for Proteomics Data Analysis Using rule-based Mining -- Probabilistic Logic Programming in Action -- Persistent topology for natural data analysis e A survey -- Predictive Models for Differentiation between Normal and Abnormal EEG through Cross-Correlation and Machine Learning Techniques -- A Brief Philosophical Note on Information -- Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline -- A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images -- Topological characteristics of oil and gas reservoirs and their applications -- Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment ;en_US
dc.format.extent1 online resource (xvi, 207 pages) : ; illustrations ;en_US
dc.format.extentIncludes author index ;en_US
dc.publisherSpringer,en_US
dc.relation.ispartofseriesLecture notes in computer science, ; 0302-9743 ; ; 10344 ;en_US
dc.relation.ispartofseriesLecture notes in artificial intelligence ;en_US
dc.relation.ispartofseriesLNCS sublibrary. SL 7, Artificial intelligence ;en_US
dc.relation.ispartofseriesLecture notes in computer science ; ; 10344. ; 0302-9743 ;en_US
dc.relation.ispartofseriesLecture notes in computer science. ; Lecture notes in artificial intelligence ;en_US
dc.relation.ispartofseriesLNCS sublibrary. ; SL 7, ; Artificial intelligence ;en_US
dc.relation.haspart9783319697758.pdfen_US
dc.subjectData mining ; Congresses ;en_US
dc.subjectMachine learning ;en_US
dc.subjectHuman-computer interaction ; Congresses ;en_US
dc.titleTowards integrative machine learning and knowledge extraction :en_US
dc.title.alternativeBIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised selected papers /en_US
dc.title.alternativeBIRS Workshop ;en_US
dc.typeBooken_US
dc.publisher.placeCham, Switzerland :en_US
dc.classification.lcQA76.9.D343 ;en_US
Appears in Collections:مهندسی فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319697758.pdf19.22 MBAdobe PDFThumbnail
Preview File