جهت دسترسی به کاربرگه ی زیر، از این لینک استفاده کنید. http://localhost/handle/Hannan/1546
عنوان: Distributed computing in big data analytics :
عنوان دیگر: concepts, technologies and applications /
پدیدآورنده: Mazumder, Sourav. ; edt ;;Bhadoria, Robin Singh. ; edt ;;Deka, Ganesh Chandra. ; edt ;;Mazumder, Sourav ; edt ;;Bhadoria, Robin Singh ; edt ;;Deka, Ganesh Chandra ; edt ;
کلید واژه ها: Big data. ;;Computer Science;Computer Communication Networks;Communications Engineering, Networks. ;;Database Management. ;;Information Systems Applications;Big data. ;
تاریخ انتشار: 2017
محل نشر: Cham :
ناشر: Springer,
فروست / شماره : Scalable computing and communications ;
Scalable computing and communications ;
Scalable computing and communications. ;
چکیده: Big data technologies are used to achieve any type of analytics in a fast and predictable way, thus enabling better human and machine level decision making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make big data analytics possible within stipulated cost and time practical for consumption by human and machines. However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use. This book fills the literature gap by addressing key aspects of distributed processing in big data analytics. The chapters tackle the essential concepts and patterns of distributed computing widely used in big data analytics. This book discusses also covers the main technologies which support distributed processing. Finally, this book provides insight into applications of big data analytics, highlighting how principles of distributed computing are used in those situations. Practitioners and researchers alike will find this book a valuable tool for their work, helping them to select the appropriate technologies, while understanding the inherent strengths and drawbacks of those technologies. ;
توضیحات : Available to OhioLINK libraries ;


Ohio Library and Information Network ;
005.7 ; 23 ;

Original ; 9783319598338 ; 3319598333 ; (OCoLC)985080822 ;
آدرس: http://localhost/handle/Hannan/1546
شابک : 9783319598345 ; (electronic bk.) ;
3319598341 ; (electronic bk.) ;
9783319598338 ;
3319598333 ;
اطلاعات بیشتر: 1 online resource ;
1 online resource. ;
مجموعه(های):مهندسی فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319598345.pdf5.51 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Distributed computing in big data analytics :
عنوان دیگر: concepts, technologies and applications /
پدیدآورنده: Mazumder, Sourav. ; edt ;;Bhadoria, Robin Singh. ; edt ;;Deka, Ganesh Chandra. ; edt ;;Mazumder, Sourav ; edt ;;Bhadoria, Robin Singh ; edt ;;Deka, Ganesh Chandra ; edt ;
کلید واژه ها: Big data. ;;Computer Science;Computer Communication Networks;Communications Engineering, Networks. ;;Database Management. ;;Information Systems Applications;Big data. ;
تاریخ انتشار: 2017
محل نشر: Cham :
ناشر: Springer,
فروست / شماره : Scalable computing and communications ;
Scalable computing and communications ;
Scalable computing and communications. ;
چکیده: Big data technologies are used to achieve any type of analytics in a fast and predictable way, thus enabling better human and machine level decision making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make big data analytics possible within stipulated cost and time practical for consumption by human and machines. However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use. This book fills the literature gap by addressing key aspects of distributed processing in big data analytics. The chapters tackle the essential concepts and patterns of distributed computing widely used in big data analytics. This book discusses also covers the main technologies which support distributed processing. Finally, this book provides insight into applications of big data analytics, highlighting how principles of distributed computing are used in those situations. Practitioners and researchers alike will find this book a valuable tool for their work, helping them to select the appropriate technologies, while understanding the inherent strengths and drawbacks of those technologies. ;
توضیحات : Available to OhioLINK libraries ;


Ohio Library and Information Network ;
005.7 ; 23 ;

Original ; 9783319598338 ; 3319598333 ; (OCoLC)985080822 ;
آدرس: http://localhost/handle/Hannan/1546
شابک : 9783319598345 ; (electronic bk.) ;
3319598341 ; (electronic bk.) ;
9783319598338 ;
3319598333 ;
اطلاعات بیشتر: 1 online resource ;
1 online resource. ;
مجموعه(های):مهندسی فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319598345.pdf5.51 MBAdobe PDFتصویر
مشاهده فایل
عنوان: Distributed computing in big data analytics :
عنوان دیگر: concepts, technologies and applications /
پدیدآورنده: Mazumder, Sourav. ; edt ;;Bhadoria, Robin Singh. ; edt ;;Deka, Ganesh Chandra. ; edt ;;Mazumder, Sourav ; edt ;;Bhadoria, Robin Singh ; edt ;;Deka, Ganesh Chandra ; edt ;
کلید واژه ها: Big data. ;;Computer Science;Computer Communication Networks;Communications Engineering, Networks. ;;Database Management. ;;Information Systems Applications;Big data. ;
تاریخ انتشار: 2017
محل نشر: Cham :
ناشر: Springer,
فروست / شماره : Scalable computing and communications ;
Scalable computing and communications ;
Scalable computing and communications. ;
چکیده: Big data technologies are used to achieve any type of analytics in a fast and predictable way, thus enabling better human and machine level decision making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make big data analytics possible within stipulated cost and time practical for consumption by human and machines. However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use. This book fills the literature gap by addressing key aspects of distributed processing in big data analytics. The chapters tackle the essential concepts and patterns of distributed computing widely used in big data analytics. This book discusses also covers the main technologies which support distributed processing. Finally, this book provides insight into applications of big data analytics, highlighting how principles of distributed computing are used in those situations. Practitioners and researchers alike will find this book a valuable tool for their work, helping them to select the appropriate technologies, while understanding the inherent strengths and drawbacks of those technologies. ;
توضیحات : Available to OhioLINK libraries ;


Ohio Library and Information Network ;
005.7 ; 23 ;

Original ; 9783319598338 ; 3319598333 ; (OCoLC)985080822 ;
آدرس: http://localhost/handle/Hannan/1546
شابک : 9783319598345 ; (electronic bk.) ;
3319598341 ; (electronic bk.) ;
9783319598338 ;
3319598333 ;
اطلاعات بیشتر: 1 online resource ;
1 online resource. ;
مجموعه(های):مهندسی فناوری اطلاعات

پیوست های این کاربرگه
فایل توضیحات اندازهفرمت  
9783319598345.pdf5.51 MBAdobe PDFتصویر
مشاهده فایل