Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/1455
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNandy, Abhishek. ;en_US
dc.contributor.authorBiswas, Manisha. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:28:54Z-
dc.date.available2020-05-17T08:28:54Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484236734 ;en_US
dc.identifier.isbn9781484236727 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1455-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionQA76en_US
dc.descriptionPrinted edition: ; 9781484236727. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractLearn the core concepts of neural networks and discover the different types of neural network, using Unity as your platform. In this book you will start by exploring back propagation and unsupervised neural networks with Unity and C#. Youeell then move onto activation functions, such as sigmoid functions, step functions, and so on. The author also explains all the variations of neural networks such as feed forward, recurrent, and radial. Once youeeve gained the basics, youeell start programming Unity with C#. In this section the author discusses constructing neural networks for unsupervised learning, representing a neural network in terms of data structures in C#, and replicating a neural network in Unity as a simulation. Finally, youeell define back propagation with Unity C#, before compiling your project. You will: Discover the concepts behind neural networks Work with Unity and C# See the difference between fully connected and convolutional neural networks Master neural network processing for Windows 10 UWP. ;en_US
dc.description.statementofresponsibilityby Abhishek Nandy, Manisha Biswas.en_US
dc.description.tableofcontentsChapter 1: Core Concepts of Neural Networks -- Chapter 2: Different types of Neural Network -- Chapter 3: Neural Network with Unity -- Chapter 4: Back propagation using Unity -- Chapter 5: Neural Network with Processing and Windows 10 UWP. ;en_US
dc.format.extentXI, 158 p. 107 illus. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484236727.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectComputer Scienceen_US
dc.subjectGame Development. ;en_US
dc.subjectMicrosoft and .NET. ;en_US
dc.titleNeural Networks in Unityen_US
dc.title.alternativeC# Programming for Windows 10 /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484236727.pdf6.29 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNandy, Abhishek. ;en_US
dc.contributor.authorBiswas, Manisha. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:28:54Z-
dc.date.available2020-05-17T08:28:54Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484236734 ;en_US
dc.identifier.isbn9781484236727 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1455-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionQA76en_US
dc.descriptionPrinted edition: ; 9781484236727. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractLearn the core concepts of neural networks and discover the different types of neural network, using Unity as your platform. In this book you will start by exploring back propagation and unsupervised neural networks with Unity and C#. Youeell then move onto activation functions, such as sigmoid functions, step functions, and so on. The author also explains all the variations of neural networks such as feed forward, recurrent, and radial. Once youeeve gained the basics, youeell start programming Unity with C#. In this section the author discusses constructing neural networks for unsupervised learning, representing a neural network in terms of data structures in C#, and replicating a neural network in Unity as a simulation. Finally, youeell define back propagation with Unity C#, before compiling your project. You will: Discover the concepts behind neural networks Work with Unity and C# See the difference between fully connected and convolutional neural networks Master neural network processing for Windows 10 UWP. ;en_US
dc.description.statementofresponsibilityby Abhishek Nandy, Manisha Biswas.en_US
dc.description.tableofcontentsChapter 1: Core Concepts of Neural Networks -- Chapter 2: Different types of Neural Network -- Chapter 3: Neural Network with Unity -- Chapter 4: Back propagation using Unity -- Chapter 5: Neural Network with Processing and Windows 10 UWP. ;en_US
dc.format.extentXI, 158 p. 107 illus. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484236727.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectComputer Scienceen_US
dc.subjectGame Development. ;en_US
dc.subjectMicrosoft and .NET. ;en_US
dc.titleNeural Networks in Unityen_US
dc.title.alternativeC# Programming for Windows 10 /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484236727.pdf6.29 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNandy, Abhishek. ;en_US
dc.contributor.authorBiswas, Manisha. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:28:54Z-
dc.date.available2020-05-17T08:28:54Z-
dc.date.issued2018en_US
dc.identifier.isbn9781484236734 ;en_US
dc.identifier.isbn9781484236727 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1455-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionQA76en_US
dc.descriptionPrinted edition: ; 9781484236727. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractLearn the core concepts of neural networks and discover the different types of neural network, using Unity as your platform. In this book you will start by exploring back propagation and unsupervised neural networks with Unity and C#. Youeell then move onto activation functions, such as sigmoid functions, step functions, and so on. The author also explains all the variations of neural networks such as feed forward, recurrent, and radial. Once youeeve gained the basics, youeell start programming Unity with C#. In this section the author discusses constructing neural networks for unsupervised learning, representing a neural network in terms of data structures in C#, and replicating a neural network in Unity as a simulation. Finally, youeell define back propagation with Unity C#, before compiling your project. You will: Discover the concepts behind neural networks Work with Unity and C# See the difference between fully connected and convolutional neural networks Master neural network processing for Windows 10 UWP. ;en_US
dc.description.statementofresponsibilityby Abhishek Nandy, Manisha Biswas.en_US
dc.description.tableofcontentsChapter 1: Core Concepts of Neural Networks -- Chapter 2: Different types of Neural Network -- Chapter 3: Neural Network with Unity -- Chapter 4: Back propagation using Unity -- Chapter 5: Neural Network with Processing and Windows 10 UWP. ;en_US
dc.format.extentXI, 158 p. 107 illus. ; online resource. ;en_US
dc.publisherApress :en_US
dc.publisherImprint: Apress,en_US
dc.relation.haspart9781484236727.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectComputer Scienceen_US
dc.subjectGame Development. ;en_US
dc.subjectMicrosoft and .NET. ;en_US
dc.titleNeural Networks in Unityen_US
dc.title.alternativeC# Programming for Windows 10 /en_US
dc.typeBooken_US
dc.publisher.placeBerkeley, CA :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9781484236727.pdf6.29 MBAdobe PDFThumbnail
Preview File