Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/1313
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBianchi, Filippo Maria ;en_US
dc.contributor.authorMaiorino, Enrico ;en_US
dc.contributor.authorKampffmeyer, Michael C ;en_US
dc.contributor.authorRizzi, Antonello ;en_US
dc.contributor.authorJenssen, Robert ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:27:30Z-
dc.date.available2020-05-17T08:27:30Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319703381 ; (electronic bk.) ;en_US
dc.identifier.isbn3319703382 ; (electronic bk.) ;en_US
dc.identifier.isbn9783319703374 ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1313-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionPrint version: ; Bianchi, Filippo Maria ; Recurrent Neural Networks for Short-Term Load Forecasting : An Overview and Comparative Analysis ; Cham : Springer International Publishing,c2017 ; 9783319703374 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.statementofresponsibilityFilippo Maria Bianchi, Enrico Maiorino, Michael C. Kampffmeyer, Antonello Rizzi, Robert Jenssenen_US
dc.description.tableofcontents""Preface""; ""Contents""; ""Acronyms""; ""1 Introduction""; ""References""; ""2 Properties and Training in Recurrent Neural Networks""; ""2.1 Backpropagation Through Time""; ""2.2 Gradient Descent and Loss Function""; ""2.3 Parameters Update Strategies""; ""2.4 Vanishing and Exploding Gradient""; ""References""; ""3 Recurrent Neural Network Architectures""; ""3.1 Elman Recurrent Neural Network""; ""3.2 Long Short-Term Memory""; ""3.3 Gated Recurrent Unit""; ""References""; ""4 Other Recurrent Neural Networks Models""; ""4.1 NARX Network""; ""4.2 Echo State Network""; ""References"" ;en_US
dc.description.tableofcontents""5 Synthetic Time Series""""References""; ""6 Real-World Load Time Series""; ""6.1 Orange Dataset -- Telephonic Activity Load""; ""6.2 ACEA Dataset -- Electricity Load""; ""6.3 GEFCom2012 Dataset -- Electricity Load""; ""References""; ""7 Experiments""; ""7.1 Experimental Settings""; ""7.1.1 ERNN, LSTM, and GRU""; ""7.1.2 NARX""; ""7.1.3 ESN""; ""7.2 Results on Synthetic Dataset""; ""7.3 Results on Real-World Dataset""; ""7.3.1 Results on Orange Dataset""; ""7.3.2 Results on ACEA Dataset""; ""7.3.3 Results on GEFCom Dataset""; ""References""; ""8 Conclusions"" ;en_US
dc.format.extent1 online resource (74 p.) ;en_US
dc.publisherSpringer,en_US
dc.relation.ispartofseriesSpringerBriefs in Computer Science ;en_US
dc.relation.ispartofseriesSpringerBriefs in computer science ;en_US
dc.relation.haspart9783319703381.pdfen_US
dc.subjectNeural networks (Computer science) ;en_US
dc.titleRecurrent neural networks for short-term load forecastingen_US
dc.title.alternativean overview and comparative analysis /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
dc.classification.lcQA76.87 ;en_US
Appears in Collections:مهندسی فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319703381.pdf2.9 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBianchi, Filippo Maria ;en_US
dc.contributor.authorMaiorino, Enrico ;en_US
dc.contributor.authorKampffmeyer, Michael C ;en_US
dc.contributor.authorRizzi, Antonello ;en_US
dc.contributor.authorJenssen, Robert ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:27:30Z-
dc.date.available2020-05-17T08:27:30Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319703381 ; (electronic bk.) ;en_US
dc.identifier.isbn3319703382 ; (electronic bk.) ;en_US
dc.identifier.isbn9783319703374 ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1313-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionPrint version: ; Bianchi, Filippo Maria ; Recurrent Neural Networks for Short-Term Load Forecasting : An Overview and Comparative Analysis ; Cham : Springer International Publishing,c2017 ; 9783319703374 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.statementofresponsibilityFilippo Maria Bianchi, Enrico Maiorino, Michael C. Kampffmeyer, Antonello Rizzi, Robert Jenssenen_US
dc.description.tableofcontents""Preface""; ""Contents""; ""Acronyms""; ""1 Introduction""; ""References""; ""2 Properties and Training in Recurrent Neural Networks""; ""2.1 Backpropagation Through Time""; ""2.2 Gradient Descent and Loss Function""; ""2.3 Parameters Update Strategies""; ""2.4 Vanishing and Exploding Gradient""; ""References""; ""3 Recurrent Neural Network Architectures""; ""3.1 Elman Recurrent Neural Network""; ""3.2 Long Short-Term Memory""; ""3.3 Gated Recurrent Unit""; ""References""; ""4 Other Recurrent Neural Networks Models""; ""4.1 NARX Network""; ""4.2 Echo State Network""; ""References"" ;en_US
dc.description.tableofcontents""5 Synthetic Time Series""""References""; ""6 Real-World Load Time Series""; ""6.1 Orange Dataset -- Telephonic Activity Load""; ""6.2 ACEA Dataset -- Electricity Load""; ""6.3 GEFCom2012 Dataset -- Electricity Load""; ""References""; ""7 Experiments""; ""7.1 Experimental Settings""; ""7.1.1 ERNN, LSTM, and GRU""; ""7.1.2 NARX""; ""7.1.3 ESN""; ""7.2 Results on Synthetic Dataset""; ""7.3 Results on Real-World Dataset""; ""7.3.1 Results on Orange Dataset""; ""7.3.2 Results on ACEA Dataset""; ""7.3.3 Results on GEFCom Dataset""; ""References""; ""8 Conclusions"" ;en_US
dc.format.extent1 online resource (74 p.) ;en_US
dc.publisherSpringer,en_US
dc.relation.ispartofseriesSpringerBriefs in Computer Science ;en_US
dc.relation.ispartofseriesSpringerBriefs in computer science ;en_US
dc.relation.haspart9783319703381.pdfen_US
dc.subjectNeural networks (Computer science) ;en_US
dc.titleRecurrent neural networks for short-term load forecastingen_US
dc.title.alternativean overview and comparative analysis /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
dc.classification.lcQA76.87 ;en_US
Appears in Collections:مهندسی فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319703381.pdf2.9 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBianchi, Filippo Maria ;en_US
dc.contributor.authorMaiorino, Enrico ;en_US
dc.contributor.authorKampffmeyer, Michael C ;en_US
dc.contributor.authorRizzi, Antonello ;en_US
dc.contributor.authorJenssen, Robert ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:27:30Z-
dc.date.available2020-05-17T08:27:30Z-
dc.date.issued2017en_US
dc.identifier.isbn9783319703381 ; (electronic bk.) ;en_US
dc.identifier.isbn3319703382 ; (electronic bk.) ;en_US
dc.identifier.isbn9783319703374 ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1313-
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionAvailable to OhioLINK libraries ;en_US
dc.descriptionOhio Library and Information Network ;en_US
dc.descriptionPrint version: ; Bianchi, Filippo Maria ; Recurrent Neural Networks for Short-Term Load Forecasting : An Overview and Comparative Analysis ; Cham : Springer International Publishing,c2017 ; 9783319703374 ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.statementofresponsibilityFilippo Maria Bianchi, Enrico Maiorino, Michael C. Kampffmeyer, Antonello Rizzi, Robert Jenssenen_US
dc.description.tableofcontents""Preface""; ""Contents""; ""Acronyms""; ""1 Introduction""; ""References""; ""2 Properties and Training in Recurrent Neural Networks""; ""2.1 Backpropagation Through Time""; ""2.2 Gradient Descent and Loss Function""; ""2.3 Parameters Update Strategies""; ""2.4 Vanishing and Exploding Gradient""; ""References""; ""3 Recurrent Neural Network Architectures""; ""3.1 Elman Recurrent Neural Network""; ""3.2 Long Short-Term Memory""; ""3.3 Gated Recurrent Unit""; ""References""; ""4 Other Recurrent Neural Networks Models""; ""4.1 NARX Network""; ""4.2 Echo State Network""; ""References"" ;en_US
dc.description.tableofcontents""5 Synthetic Time Series""""References""; ""6 Real-World Load Time Series""; ""6.1 Orange Dataset -- Telephonic Activity Load""; ""6.2 ACEA Dataset -- Electricity Load""; ""6.3 GEFCom2012 Dataset -- Electricity Load""; ""References""; ""7 Experiments""; ""7.1 Experimental Settings""; ""7.1.1 ERNN, LSTM, and GRU""; ""7.1.2 NARX""; ""7.1.3 ESN""; ""7.2 Results on Synthetic Dataset""; ""7.3 Results on Real-World Dataset""; ""7.3.1 Results on Orange Dataset""; ""7.3.2 Results on ACEA Dataset""; ""7.3.3 Results on GEFCom Dataset""; ""References""; ""8 Conclusions"" ;en_US
dc.format.extent1 online resource (74 p.) ;en_US
dc.publisherSpringer,en_US
dc.relation.ispartofseriesSpringerBriefs in Computer Science ;en_US
dc.relation.ispartofseriesSpringerBriefs in computer science ;en_US
dc.relation.haspart9783319703381.pdfen_US
dc.subjectNeural networks (Computer science) ;en_US
dc.titleRecurrent neural networks for short-term load forecastingen_US
dc.title.alternativean overview and comparative analysis /en_US
dc.typeBooken_US
dc.publisher.placeCham :en_US
dc.classification.lcQA76.87 ;en_US
Appears in Collections:مهندسی فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9783319703381.pdf2.9 MBAdobe PDFThumbnail
Preview File