Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/1243
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMandal, Jyotsna K. ;en_US
dc.contributor.authorMukhopadhyay, Somnath. ;en_US
dc.contributor.authorDutta, Paramartha. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:26:53Z-
dc.date.available2020-05-17T08:26:53Z-
dc.date.issued2018en_US
dc.identifier.isbn9789811314711 ;en_US
dc.identifier.isbn9789811314704 (print) ;en_US
dc.identifier.isbn9789811314728 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1243-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314704. ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314728. ;en_US
dc.descriptionen_US
dc.description.abstractThis book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems. ;en_US
dc.description.statementofresponsibilityedited by Jyotsna K. Mandal, Somnath Mukhopadhyay, Paramartha Dutta.en_US
dc.description.tableofcontentsChapter 1. An Advance Overview of Single and Multi-Objective Optimization -- Chapter 2. Non-dominated Sorting Based Multi/Many Objective Optimization: Two Decades of Research and Application -- Chapter 3. Uncertain Multi-objective Portfolio Selection Model based on Genetic Algorithm -- Chapter 4. A Multiobjective Genetic Algorithm-based Approach for Identifying Relevant and Non-redundant Cancer-MicroRNA Markers -- Chapter 5. Application of Multi-objective Optimizations in Protein Structure Prediction -- Chapter 6. Multi-target Multiobjective Programming and Patrol Manpower Planning for Traffic Management via Genetic Algorithm -- Chapter 7. Multi-objective Optimization for Key Player Identification in Networks -- Chapter 8. Joint Maximization in Energy and Spectral Efficiency in Cooperative Cognitive Radio Networks -- Chapter 9. A Neoteric Multi-Objective Framework for Engineering Process Optimization: Metaheuristics and Experimental Designs based Approach -- Chapter 10. Multi/Many Objective Optimization ee Hybrid Intelligent Framework -- Chapter 11. Efficiency Maximization of Multimedia Data Mining using Multiobjective Neuro-ACO Approach -- Chapter 12. Optimized Determination of Separating Hyper-Plane of an SVM ee Hybrid Multiobjective Model -- Chapter 13. Efficient Cluster Head Selection in Wireless Sensor Network using Multiobjective Model -- Chapter 14. Achieving Optimized Bio-Metric Security in E-Governance by Multiobjective Neuro Approach -- Chapter 15. Advantage of Quantum Inspired Multiobjective Genetic Algorithm over Classical Multiobjective Genetic Algorithm -- Chapter 16. Optimizing Performance Parameter of Image Segmentation using Hybrid Multiobjective Framework. ;en_US
dc.format.extentXVI, 318 p. 90 illus., 51 illus. in color. ; online resource. ;en_US
dc.publisherSpringer Singapore :en_US
dc.publisherImprint: Springer,en_US
dc.relation.haspart9789811314704.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematical optimization. ;en_US
dc.subjectEngineeringen_US
dc.subjectMathematics of Computing. ; http://scigraph.springernature.com/things/product-market-codes/I17001. ;en_US
dc.subjectOptimization. ; http://scigraph.springernature.com/things/product-market-codes/M26008. ;en_US
dc.subjectComputational Intelligence. ; http://scigraph.springernature.com/things/product-market-codes/T11014. ;en_US
dc.subject.ddc004.0151 ; 23 ;en_US
dc.subject.lccQA76.9.M35 ;en_US
dc.titleMulti-Objective Optimizationen_US
dc.title.alternativeEvolutionary to Hybrid Framework /en_US
dc.typeBooken_US
dc.publisher.placeSingapore :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9789811314704.pdf10.85 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMandal, Jyotsna K. ;en_US
dc.contributor.authorMukhopadhyay, Somnath. ;en_US
dc.contributor.authorDutta, Paramartha. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:26:53Z-
dc.date.available2020-05-17T08:26:53Z-
dc.date.issued2018en_US
dc.identifier.isbn9789811314711 ;en_US
dc.identifier.isbn9789811314704 (print) ;en_US
dc.identifier.isbn9789811314728 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1243-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314704. ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314728. ;en_US
dc.descriptionen_US
dc.description.abstractThis book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems. ;en_US
dc.description.statementofresponsibilityedited by Jyotsna K. Mandal, Somnath Mukhopadhyay, Paramartha Dutta.en_US
dc.description.tableofcontentsChapter 1. An Advance Overview of Single and Multi-Objective Optimization -- Chapter 2. Non-dominated Sorting Based Multi/Many Objective Optimization: Two Decades of Research and Application -- Chapter 3. Uncertain Multi-objective Portfolio Selection Model based on Genetic Algorithm -- Chapter 4. A Multiobjective Genetic Algorithm-based Approach for Identifying Relevant and Non-redundant Cancer-MicroRNA Markers -- Chapter 5. Application of Multi-objective Optimizations in Protein Structure Prediction -- Chapter 6. Multi-target Multiobjective Programming and Patrol Manpower Planning for Traffic Management via Genetic Algorithm -- Chapter 7. Multi-objective Optimization for Key Player Identification in Networks -- Chapter 8. Joint Maximization in Energy and Spectral Efficiency in Cooperative Cognitive Radio Networks -- Chapter 9. A Neoteric Multi-Objective Framework for Engineering Process Optimization: Metaheuristics and Experimental Designs based Approach -- Chapter 10. Multi/Many Objective Optimization ee Hybrid Intelligent Framework -- Chapter 11. Efficiency Maximization of Multimedia Data Mining using Multiobjective Neuro-ACO Approach -- Chapter 12. Optimized Determination of Separating Hyper-Plane of an SVM ee Hybrid Multiobjective Model -- Chapter 13. Efficient Cluster Head Selection in Wireless Sensor Network using Multiobjective Model -- Chapter 14. Achieving Optimized Bio-Metric Security in E-Governance by Multiobjective Neuro Approach -- Chapter 15. Advantage of Quantum Inspired Multiobjective Genetic Algorithm over Classical Multiobjective Genetic Algorithm -- Chapter 16. Optimizing Performance Parameter of Image Segmentation using Hybrid Multiobjective Framework. ;en_US
dc.format.extentXVI, 318 p. 90 illus., 51 illus. in color. ; online resource. ;en_US
dc.publisherSpringer Singapore :en_US
dc.publisherImprint: Springer,en_US
dc.relation.haspart9789811314704.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematical optimization. ;en_US
dc.subjectEngineeringen_US
dc.subjectMathematics of Computing. ; http://scigraph.springernature.com/things/product-market-codes/I17001. ;en_US
dc.subjectOptimization. ; http://scigraph.springernature.com/things/product-market-codes/M26008. ;en_US
dc.subjectComputational Intelligence. ; http://scigraph.springernature.com/things/product-market-codes/T11014. ;en_US
dc.subject.ddc004.0151 ; 23 ;en_US
dc.subject.lccQA76.9.M35 ;en_US
dc.titleMulti-Objective Optimizationen_US
dc.title.alternativeEvolutionary to Hybrid Framework /en_US
dc.typeBooken_US
dc.publisher.placeSingapore :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9789811314704.pdf10.85 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMandal, Jyotsna K. ;en_US
dc.contributor.authorMukhopadhyay, Somnath. ;en_US
dc.contributor.authorDutta, Paramartha. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:26:53Z-
dc.date.available2020-05-17T08:26:53Z-
dc.date.issued2018en_US
dc.identifier.isbn9789811314711 ;en_US
dc.identifier.isbn9789811314704 (print) ;en_US
dc.identifier.isbn9789811314728 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1243-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314704. ;en_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811314728. ;en_US
dc.descriptionen_US
dc.description.abstractThis book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems. ;en_US
dc.description.statementofresponsibilityedited by Jyotsna K. Mandal, Somnath Mukhopadhyay, Paramartha Dutta.en_US
dc.description.tableofcontentsChapter 1. An Advance Overview of Single and Multi-Objective Optimization -- Chapter 2. Non-dominated Sorting Based Multi/Many Objective Optimization: Two Decades of Research and Application -- Chapter 3. Uncertain Multi-objective Portfolio Selection Model based on Genetic Algorithm -- Chapter 4. A Multiobjective Genetic Algorithm-based Approach for Identifying Relevant and Non-redundant Cancer-MicroRNA Markers -- Chapter 5. Application of Multi-objective Optimizations in Protein Structure Prediction -- Chapter 6. Multi-target Multiobjective Programming and Patrol Manpower Planning for Traffic Management via Genetic Algorithm -- Chapter 7. Multi-objective Optimization for Key Player Identification in Networks -- Chapter 8. Joint Maximization in Energy and Spectral Efficiency in Cooperative Cognitive Radio Networks -- Chapter 9. A Neoteric Multi-Objective Framework for Engineering Process Optimization: Metaheuristics and Experimental Designs based Approach -- Chapter 10. Multi/Many Objective Optimization ee Hybrid Intelligent Framework -- Chapter 11. Efficiency Maximization of Multimedia Data Mining using Multiobjective Neuro-ACO Approach -- Chapter 12. Optimized Determination of Separating Hyper-Plane of an SVM ee Hybrid Multiobjective Model -- Chapter 13. Efficient Cluster Head Selection in Wireless Sensor Network using Multiobjective Model -- Chapter 14. Achieving Optimized Bio-Metric Security in E-Governance by Multiobjective Neuro Approach -- Chapter 15. Advantage of Quantum Inspired Multiobjective Genetic Algorithm over Classical Multiobjective Genetic Algorithm -- Chapter 16. Optimizing Performance Parameter of Image Segmentation using Hybrid Multiobjective Framework. ;en_US
dc.format.extentXVI, 318 p. 90 illus., 51 illus. in color. ; online resource. ;en_US
dc.publisherSpringer Singapore :en_US
dc.publisherImprint: Springer,en_US
dc.relation.haspart9789811314704.pdfen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematical optimization. ;en_US
dc.subjectEngineeringen_US
dc.subjectMathematics of Computing. ; http://scigraph.springernature.com/things/product-market-codes/I17001. ;en_US
dc.subjectOptimization. ; http://scigraph.springernature.com/things/product-market-codes/M26008. ;en_US
dc.subjectComputational Intelligence. ; http://scigraph.springernature.com/things/product-market-codes/T11014. ;en_US
dc.subject.ddc004.0151 ; 23 ;en_US
dc.subject.lccQA76.9.M35 ;en_US
dc.titleMulti-Objective Optimizationen_US
dc.title.alternativeEvolutionary to Hybrid Framework /en_US
dc.typeBooken_US
dc.publisher.placeSingapore :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9789811314704.pdf10.85 MBAdobe PDFThumbnail
Preview File