Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/1004
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhou, Qinglei. ;en_US
dc.contributor.authorMiao, Qiguang. ;en_US
dc.contributor.authorWang, Hongzhi. ;en_US
dc.contributor.authorXie, Wei. ;en_US
dc.contributor.authorWang, Yan. ;en_US
dc.contributor.authorLu, Zeguang. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:24:21Z-
dc.date.available2020-05-17T08:24:21Z-
dc.date.issued2018en_US
dc.identifier.isbn9789811322068 ;en_US
dc.identifier.isbn9789811322051 (print) ;en_US
dc.identifier.isbn9789811322075 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1004-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9789811322051. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811322075. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis two volume set (CCIS 901 and 902) constitutes the refereed proceedings of the 4th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2018 (originally ICYCSEE) held in Zhengzhou, China, in September 2018. The 125 revised full papers presented in these two volumes were carefully reviewed and selected from 1057 submissions. The papers cover a wide range of topics related to basic theory and techniques for data science including mathematical issues in data science, computational theory for data science, big data management and applications, data quality and data preparation, evaluation and measurement in data science, data visualization, big data mining and knowledge management, infrastructure for data science, machine learning for data science, data security and privacy, applications of data science, case study of data science, multimedia data management and analysis, data-driven scientific research, data-driven bioinformatics, data-driven healthcare, data-driven management, data-driven eGovernment, data-driven smart city/planet, data marketing and economics, social media and recommendation systems, data-driven security, data-driven business model innovation, social and/or organizational impacts of data science. ;en_US
dc.description.statementofresponsibilityedited by Qinglei Zhou, Qiguang Miao, Hongzhi Wang, Wei Xie, Yan Wang, Zeguang Lu.en_US
dc.description.tableofcontentsComputational theory for data science -- Big data management and applications -- Data quality and data preparation -- Evaluation and measurement in data science -- Data visualization -- Big data mining and knowledge management -- Infrastructure for data science -- Machine learning for data science -- Data security and privacy -- Applications of data science -- Case study of data science -- Multimedia data management and analysis -- Data-driven scientific research -- Data-driven bioinformatics -- Data-driven healthcare -- Data-driven management -- Data-driven e-government -- Data-driven smart city/planet -- Data marketing and economics -- Social media and recommendation systems -- Data-driven security -- Data-driven business model innovation -- Social and/or organizational impacts of data science. ;en_US
dc.format.extentXXIX, 649 p. 269 illus. ; online resource. ;en_US
dc.publisherSpringer Singapore :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesCommunications in Computer and Information Science, ; 1865-0929 ; ; 902. ;en_US
dc.relation.ispartofseriesCommunications in Computer and Information Science, ; 1865-0929 ; ; 902. ;en_US
dc.relation.haspart9789811322051.pdfen_US
dc.subjectData Miningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectComputer Communication Networksen_US
dc.subjectComputer vision. ;en_US
dc.subjectData Mining and Knowledge Discovery. ; http://scigraph.springernature.com/things/product-market-codes/I18030. ;en_US
dc.subjectInformation Systems Applicationsen_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectComputer Communication Networksen_US
dc.subjectComputer Imaging, Vision, Pattern Recognition and Graphics. ; http://scigraph.springernature.com/things/product-market-codes/I22005. ;en_US
dc.subject.ddc006.312 ; 23 ;en_US
dc.subject.lccQA76.9.D343 ;en_US
dc.titleData Scienceen_US
dc.title.alternative4th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2018, Zhengzhou, China, September 21-23, 2018, Proceedings, Part II /en_US
dc.typeBooken_US
dc.publisher.placeSingapore :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9789811322051.pdf71.31 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhou, Qinglei. ;en_US
dc.contributor.authorMiao, Qiguang. ;en_US
dc.contributor.authorWang, Hongzhi. ;en_US
dc.contributor.authorXie, Wei. ;en_US
dc.contributor.authorWang, Yan. ;en_US
dc.contributor.authorLu, Zeguang. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:24:21Z-
dc.date.available2020-05-17T08:24:21Z-
dc.date.issued2018en_US
dc.identifier.isbn9789811322068 ;en_US
dc.identifier.isbn9789811322051 (print) ;en_US
dc.identifier.isbn9789811322075 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1004-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9789811322051. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811322075. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis two volume set (CCIS 901 and 902) constitutes the refereed proceedings of the 4th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2018 (originally ICYCSEE) held in Zhengzhou, China, in September 2018. The 125 revised full papers presented in these two volumes were carefully reviewed and selected from 1057 submissions. The papers cover a wide range of topics related to basic theory and techniques for data science including mathematical issues in data science, computational theory for data science, big data management and applications, data quality and data preparation, evaluation and measurement in data science, data visualization, big data mining and knowledge management, infrastructure for data science, machine learning for data science, data security and privacy, applications of data science, case study of data science, multimedia data management and analysis, data-driven scientific research, data-driven bioinformatics, data-driven healthcare, data-driven management, data-driven eGovernment, data-driven smart city/planet, data marketing and economics, social media and recommendation systems, data-driven security, data-driven business model innovation, social and/or organizational impacts of data science. ;en_US
dc.description.statementofresponsibilityedited by Qinglei Zhou, Qiguang Miao, Hongzhi Wang, Wei Xie, Yan Wang, Zeguang Lu.en_US
dc.description.tableofcontentsComputational theory for data science -- Big data management and applications -- Data quality and data preparation -- Evaluation and measurement in data science -- Data visualization -- Big data mining and knowledge management -- Infrastructure for data science -- Machine learning for data science -- Data security and privacy -- Applications of data science -- Case study of data science -- Multimedia data management and analysis -- Data-driven scientific research -- Data-driven bioinformatics -- Data-driven healthcare -- Data-driven management -- Data-driven e-government -- Data-driven smart city/planet -- Data marketing and economics -- Social media and recommendation systems -- Data-driven security -- Data-driven business model innovation -- Social and/or organizational impacts of data science. ;en_US
dc.format.extentXXIX, 649 p. 269 illus. ; online resource. ;en_US
dc.publisherSpringer Singapore :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesCommunications in Computer and Information Science, ; 1865-0929 ; ; 902. ;en_US
dc.relation.ispartofseriesCommunications in Computer and Information Science, ; 1865-0929 ; ; 902. ;en_US
dc.relation.haspart9789811322051.pdfen_US
dc.subjectData Miningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectComputer Communication Networksen_US
dc.subjectComputer vision. ;en_US
dc.subjectData Mining and Knowledge Discovery. ; http://scigraph.springernature.com/things/product-market-codes/I18030. ;en_US
dc.subjectInformation Systems Applicationsen_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectComputer Communication Networksen_US
dc.subjectComputer Imaging, Vision, Pattern Recognition and Graphics. ; http://scigraph.springernature.com/things/product-market-codes/I22005. ;en_US
dc.subject.ddc006.312 ; 23 ;en_US
dc.subject.lccQA76.9.D343 ;en_US
dc.titleData Scienceen_US
dc.title.alternative4th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2018, Zhengzhou, China, September 21-23, 2018, Proceedings, Part II /en_US
dc.typeBooken_US
dc.publisher.placeSingapore :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9789811322051.pdf71.31 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhou, Qinglei. ;en_US
dc.contributor.authorMiao, Qiguang. ;en_US
dc.contributor.authorWang, Hongzhi. ;en_US
dc.contributor.authorXie, Wei. ;en_US
dc.contributor.authorWang, Yan. ;en_US
dc.contributor.authorLu, Zeguang. ;en_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-05-17T08:24:21Z-
dc.date.available2020-05-17T08:24:21Z-
dc.date.issued2018en_US
dc.identifier.isbn9789811322068 ;en_US
dc.identifier.isbn9789811322051 (print) ;en_US
dc.identifier.isbn9789811322075 (print) ;en_US
dc.identifier.urihttp://localhost/handle/Hannan/1004-
dc.descriptionSpringerLink (Online service) ;en_US
dc.descriptionPrinted edition: ; 9789811322051. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.descriptionPrinted edition: ; 9789811322075. ;en_US
dc.descriptionen_US
dc.descriptionen_US
dc.description.abstractThis two volume set (CCIS 901 and 902) constitutes the refereed proceedings of the 4th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2018 (originally ICYCSEE) held in Zhengzhou, China, in September 2018. The 125 revised full papers presented in these two volumes were carefully reviewed and selected from 1057 submissions. The papers cover a wide range of topics related to basic theory and techniques for data science including mathematical issues in data science, computational theory for data science, big data management and applications, data quality and data preparation, evaluation and measurement in data science, data visualization, big data mining and knowledge management, infrastructure for data science, machine learning for data science, data security and privacy, applications of data science, case study of data science, multimedia data management and analysis, data-driven scientific research, data-driven bioinformatics, data-driven healthcare, data-driven management, data-driven eGovernment, data-driven smart city/planet, data marketing and economics, social media and recommendation systems, data-driven security, data-driven business model innovation, social and/or organizational impacts of data science. ;en_US
dc.description.statementofresponsibilityedited by Qinglei Zhou, Qiguang Miao, Hongzhi Wang, Wei Xie, Yan Wang, Zeguang Lu.en_US
dc.description.tableofcontentsComputational theory for data science -- Big data management and applications -- Data quality and data preparation -- Evaluation and measurement in data science -- Data visualization -- Big data mining and knowledge management -- Infrastructure for data science -- Machine learning for data science -- Data security and privacy -- Applications of data science -- Case study of data science -- Multimedia data management and analysis -- Data-driven scientific research -- Data-driven bioinformatics -- Data-driven healthcare -- Data-driven management -- Data-driven e-government -- Data-driven smart city/planet -- Data marketing and economics -- Social media and recommendation systems -- Data-driven security -- Data-driven business model innovation -- Social and/or organizational impacts of data science. ;en_US
dc.format.extentXXIX, 649 p. 269 illus. ; online resource. ;en_US
dc.publisherSpringer Singapore :en_US
dc.publisherImprint: Springer,en_US
dc.relation.ispartofseriesCommunications in Computer and Information Science, ; 1865-0929 ; ; 902. ;en_US
dc.relation.ispartofseriesCommunications in Computer and Information Science, ; 1865-0929 ; ; 902. ;en_US
dc.relation.haspart9789811322051.pdfen_US
dc.subjectData Miningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectComputer Communication Networksen_US
dc.subjectComputer vision. ;en_US
dc.subjectData Mining and Knowledge Discovery. ; http://scigraph.springernature.com/things/product-market-codes/I18030. ;en_US
dc.subjectInformation Systems Applicationsen_US
dc.subjectArtificial Intelligence and Roboticsen_US
dc.subjectComputer Communication Networksen_US
dc.subjectComputer Imaging, Vision, Pattern Recognition and Graphics. ; http://scigraph.springernature.com/things/product-market-codes/I22005. ;en_US
dc.subject.ddc006.312 ; 23 ;en_US
dc.subject.lccQA76.9.D343 ;en_US
dc.titleData Scienceen_US
dc.title.alternative4th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2018, Zhengzhou, China, September 21-23, 2018, Proceedings, Part II /en_US
dc.typeBooken_US
dc.publisher.placeSingapore :en_US
Appears in Collections:مدیریت فناوری اطلاعات

Files in This Item:
File Description SizeFormat 
9789811322051.pdf71.31 MBAdobe PDFThumbnail
Preview File